首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinoproteins: structure, function, and biotechnological applications   总被引:13,自引:0,他引:13  
A new class of oxidoreductase containing an amino acid-derived o-quinone cofactor, of which the most typical is pyrroloquinoline quinone (PQQ), is called quinoproteins, and has been recognized as the third redox enzyme following pyridine nucleotide- and flavin-dependent dehydrogenases. Some quinoproteins include a heme c moiety in addition to the quinone cofactor in the molecule and are called quinohemoproteins. PQQ-containing quinoproteins and quinohemoproteins have a common structural basis, in which PQQ is deeply embedded in the center of the unique superbarrel structure. Increased evidence for the structure and function of quinoproteins has revealed their unique position within the redox enzymes with respect to catalytic and electron transfer properties, and also to physiological and energetic function. The peculiarities of the quinoproteins, together with their unique substrate specificity, have encouraged their biotechnological application in the fields of biosensing and bioconversion of useful compounds, and also to environmental treatment.  相似文献   

2.
On the occasion of the first international symposium on pyrroloquinoline quinone (PQQ) and quinoproteins (Delft, September 1988), a review of this novel field in enzymology is presented. Quinoproteins (PQQ-containing enzymes) are widespread, from bacteria to mammalian organisms (including man), and occur in several classes of enzymes. Indications already exist that PQQ is a versatile cofactor, involved not only in oxidation but also in hydroxylation, transamination, decarboxylation and hydration reactions. The current list of quinoproteins shows that it was overlooked in several well-studied enzymes where the presence of a common cofactor had already been established. Up until now, all eukaryotic quinoproteins have covalently bound PQQ (or perhaps pro-PQQ), while free PQQ occurs exclusively in a number of (bacterial) dehydrogenases and in the culture fluid of certain Gram-negative bacteria. Biosynthesis of free PQQ in methylotrophic bacteria starts with tyrosine and glutamic acid as precursors while intermediates in the route have not been detected and the presence of free PQQ is not required for synthesis of the covalently bound form of the cofactor in glutamic acid decarboxylase from Escherichia coli. Therefore, the assembly of covalently bound cofactor might occur in situ, i.e. in the quinoproteins themselves. If the latter also applies to mammalian quinoproteins, this implies that PQQ is not a vitamin. On the other hand, positive effects have been reported upon administration of PQQ to test animals. Methods suited to detach and to detect PQQ with a derivatized o-quinone moiety may answer questions on the uptake and processing of the compound.  相似文献   

3.
PQQ and quinoprotein enzymes in microbial oxidations   总被引:1,自引:0,他引:1  
Abstract Pyrroloquinoline quinone (PQQ) is found in a wide range of microorganisms, and several bacteria even excrete this compound into their culture medium when grown on alcohols. The existence of different classes of quinoprotein (PQQ-containing) enzymes is now well established (alcohol dehydrogenases, aldose (glucose) dehydrogenases, amine dehydrogenases and amine oxidases) while several other enzymes are suspected to be quinoproteins. In addition, many bacteria produce a quinoprotein apoenzyme, e.g., Escherichia coli and Pseudomonas testosteroni , producing glucose and ethanol dehydrogenase apoenzyme, respectively. It is unclear why these bacteria do not produce the holoenzyme form, but the apoenzymes have the ability to become functional, as was shown when the organisms were provided with PQQ. With this approach it could be demonstrated that E. coli has a non-phosphorylative route of glucose dissimilation via gluconate. Also, results with mixed cultures indicate that PQQ is a growth factor for certain bacteria under certain conditions. Despite the relatively high redox potential of the PQQ/PQQH2 couple, quinoproteins transfer electrons to a variety of natural electron acceptors. Depending on the type of quinoprotein enzyme, the following components of the respiratory chain appear to be active: cytochrome c (sometimes with a copper protein as an intermediate), cytochrome b , and NADH dehydrogenase. PQQ is not restricted to a particular group of organisms, and reactions catalysed by quinoproteins can also be performed by NAD(P)-dependent or flavoprotein enzymes. Thus, these observations do not provide arguments for the view that quinoproteins have a unique role in microbial oxidations. Further comparative studies on oxidoreductases are necessary to reveal the special features of this novel group of enzymes.  相似文献   

4.
细胞色素P450酶系广泛分布于各种生物中,它们通常由一组基因超家族编码并含有血红素,能够催化一系列化学反应,具有多种生物学功能。特别是原核生物P450酶在催化内源性和外源性化合物的反应中具有重要的工业生产应用价值,成为近年来P450酶系研究的热点。本文对近年来原核生物P450酶系的重组表达和生物催化领域的研究进展进行综述。  相似文献   

5.
In this review, I present the main highlights of my works in the development of bioelectrocatalysis, which can be used in widespread applications, particularly for the design of biosensor and biofuel cells. In particular, I focus on research progress made in two key bioelectrocatalytic reactions: glucose oxidation by flavin adenine dinucleotide-dependent glucose dehydrogenase and oxygen reduction by bilirubin oxidase. I demonstrate the fundamental principles of bioelectrocatalysis and the requirements for enhancing the catalytic performance, including the choice of a mediator of redox reactions, immobilization, and electrode materials. These methods can allow for achieving control of the bioelectrocatalytic reaction, thereby overcoming obstacles toward their industrial applications.  相似文献   

6.
Summary. S-adenosylmthionine is the major methyl donor in all living organisms, but it is also involved in many other reactions occurring through radical-based catalysis. The structure and function of some of these enzymes, including those involved in the synthesis of the molybdenum cofactors, biotin, lipoate, will be discussed.  相似文献   

7.
Regulation of arachidonate metabolism in human epidermoid carcinoma A431 cells by phospholipid hydroperoxide glutathione peroxidase (PHGPx) and cytosolic glutathione peroxidase (GPx1) was studied. In order to study the effect of reduced glutathione (GSH) on the catalysis regulation of these oxygenation enzymes, diethyl maleate was used to deplete the intracellular GSH. In the presence of 13-hydroperoxyoctadecadienoic acid, the enzymatic catalysis of cyclooxygenase and 12-lipoxygenase was significantly increased in the GSH-depleted cells. In terms of the inhibitory effect on 12-lipoxygenase, PHGPx was more sensitive to GSH concentrations than GPx1. Inhibition of PHGPx activity by the treatment of cells with antisense oligonucleotide of PHGPx mRNA increased the enzymatic catalysis of both cyclooxygenase and 12-lipoxygenase. In conclusion, the results indicate that catalysis of cyclooxygenase and 12-lipoxygenase in A431 cells was regulated by redox-reaction, and PHGPx seems to play an important role in the controlling of these reactions.  相似文献   

8.
Enzymes are the proteins responsible for the catalysis of life. Enzymes sharing a common ancestor as defined by sequence and structure similarity are grouped into families and superfamilies. The molecular function of enzymes is defined as their ability to catalyze biochemical reactions; it is manually classified by the Enzyme Commission and robust approaches to quantitatively compare catalytic reactions are just beginning to appear. Here, we present an overview of studies at the interface of the evolution and function of enzymes.  相似文献   

9.
It is now widely accepted that substrate C-H bond breakage by quinoprotein enzymes occurs by quantum mechanical tunneling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (i.e., including zero-point energy but with no tunneling correction) has been driven over recent years by experimental studies of the temperature dependence of kinetic isotope effects for these reactions in the TTQ-dependent enzymes methylamine dehydrogenase and aromatic amine dehydrogenase, which produced observations also inconsistent with the simple Bell correction model of tunneling. However, these data-specifically, the strong temperature dependence of reaction rates and the variable temperature dependence of kinetic isotope effects-are consistent with other tunneling models (denoted full tunneling models) in which protein and/or substrate fluctuations generate a configuration compatible with tunneling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate quantum states and, when necessary, motion required to increase the probability of tunneling in these states. Furthermore, tunneling mechanisms in quinoproteins are supported by computational studies employing variational transition state theory with multidimensional tunneling corrections; these studies are also discussed in this review. Potential pitfalls in analyzing the temperature dependence of kinetic isotope effects as probes of tunneling are also discussed with reference to PQQ-dependent methanol dehydrogenase.  相似文献   

10.
Principles of antibody catalysis   总被引:6,自引:0,他引:6  
Antibodies have now been shown to catalyze a variety of chemical transformations, including hydrolytic, concerted, and bimolecular reactions. The inherent chirality of the antibody binding pocket has been exploited to exert precise stereochemical control over their catalyzed reactions. The mechanisms by which antibodies catalyze reactions are not expected to differ in any general way from those of natural enzymes. Antibodies use their binding energy to stabilize species of higher free energy which appear along the reaction coordinate or effect general acid/base catalysis. The advent of catalytic antibodies promises new catalysts that extend the range of catalysis by proteins to chemical transformations that were not required during the evolution of enzymes.  相似文献   

11.
Summary The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, we here propose an alternative pathway of primitive fatty acid synthesis that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy (ATP). Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.  相似文献   

12.
The diversity of function in some enzyme superfamilies shows that during evolution, enzymes have evolved to catalyse different reactions on the same structure scaffold. In this analysis, we examine in detail how enzymes can modify their chemistry, through a comparison of the catalytic residues and mechanisms in 27 pairs of homologous enzymes of totally different functions. We find that evolution is very economical. Enzymes retain structurally conserved residues to aid catalysis, including residues that bind catalytic metal ions and modulate cofactor chemistry. We examine the conservation of residue type and residue function in these structurally conserved residue pairs. Additionally, enzymes often retain common mechanistic steps catalyzed by structurally conserved residues. We have examined these steps in the context of their overall reactions.  相似文献   

13.
P450s catalyze a wide spectrum of stereo- and regioselective reactions like hydroxylations, epoxidations and dehydrogenations. Therefore biotransformations with P450s are of great relevance to organic synthesis. The use of isolated enzymes offers advantages over the use of whole cells. A key issue for catalytic applications of isolated P450s is the demand for a continuous electron supply to the heme-group. Mediator driven bioelectrocatalysis can help to overcome this problem.For mediator driven bioelectrocatalysis the identification of a suitable mediator is crucial for the fast development of an efficient electro enzymatic process. To this end we have developed a computational screening method based on using freely available software. Calculated electron transfer rates were compared with measured product formation rates. The novel in silico procedure allows a faster identification of suitable mediators for electrochemically driven P450 catalyzed reactions and can be used as screening tool. It may also lead to a massive reduction of experimental effort for the development of bioelectrochemical reaction systems in the future.  相似文献   

14.
Quinones and related quinonoid substances catalyze redox cycling at an alkaline pH in the presence of excess glycine as reductant. With nitroblue tetrazolium and oxygen present there is concomitant reduction of the tetrazolium to formazan. This property of quinonoid compounds is used for the specific staining of quinoproteins, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotted onto nitrocellulose. The dopa-containing vitelline proteins and the 6-hydroxydopa-containing bovine serum amine oxidase are stained with the nitroblue tetrazolium/glycinate reagent. Also, the mammalian quinoproteins, diamine oxidase and lysyl oxidase, purported to contain pyrroloquinoline quinone, tested positive in this procedure. No quinonoid components were detected in three putative pyrroloquinoline quinone-containing quinoproteins, dopamine beta-hydroxylase, lipoxygenase, and peptidylglycine-amidating monoxygenase. Redox-cycling staining therefore confirms the presence of covalently bound quinones in the copper-dependent amine oxidases, but not in two putative quinoprotein oxygenases. Clarification of the biological significance of quinolation should be facilitated by identification of quinoproteins using this approach.  相似文献   

15.
Attention is drawn to the feasibility of using isothermal calorimetry for the characterization of enzyme reactions under conditions bearing greater relevance to the crowded biological environment, where kinetic parameters are likely to differ significantly from those obtained by classical enzyme kinetic studies in dilute solution. An outline of the application of isothermal calorimetry to the determination of enzyme kinetic parameters is followed by considerations of the nature and consequences of crowding effects in enzyme catalysis. Some of those effects of thermodynamic non-ideality are then illustrated by means of experimental results from calorimetric studies of the effect of molecular crowding on the kinetics of catalysis by rabbit muscle pyruvate kinase. This review concludes with a discussion of the potential of isothermal calorimetry for the experimental determination of kinetic parameters for enzymes either in biological environments or at least in media that should provide reasonable approximations of the crowded conditions encountered in vivo.  相似文献   

16.
A living cell requires thousands of different chemical reactions to utilize energy, move, grow, respond to external stimuli and reproduce itself. While these reactions take place spontaneously, they rarely proceed at a rate fast enough for life. Enzymes, biological catalysts found in all cells, greatly accelerate the rates of these chemical reactions and impart on them extraordinary specificity. In 1926, James B. Summer crystallized the enzyme urease and found that it was a protein. Skeptics argued that the enzymatic activity might reside in a trace component of the preparation rather than in the protein (Haldane, 1930), and it took another decade for the generality of Summer's finding to be established. As more and more examples of protein enzymes were found, it began to appear that biological catalysis would be exclusively the realm of proteins. In 1981 and 1982, my research group and I found a case in which RNA, a form of genetic material, was able to cleave and rejoin its own nucleotide linkages. This self-splicing RNA provided the first example of a catalytic active site formed of ribonucleic acid. This lecture gives a personal view of the events that led to our realization of RNA self-splicing and the catalytic potential of RNA. It provides yet another illustration of the circuitous path by which scientific inquiry often proceeds. The decision to expand so many words describing the early experiments means that much of our current knowledge about the system will not be mentioned. For a more comprehensive view of the mechanism and structure of the Tetrahymena self-splicing RNA and RNA catalysis in general, the reader is directed to a number of recent reviews (Cech & Bass, 1986: Cech, 1987, 1988a, 1990; Burke, 1988; Altman, 1989). Possible medical and pharmaceutical implications of RNA catalysis have also been described recently (Cech, 1988b).  相似文献   

17.
Free radical mechanisms in enzyme reactions   总被引:1,自引:0,他引:1  
Free radicals are formed in prosthetic groups or amino acid residues of certain enzymes. These free radicals are closely related to the activation process in enzyme catalysis, but their formation does not always result in the formation of substrate free radicals as a product of the enzyme reactions. The role of free radicals in enzyme catalysis is discussed.  相似文献   

18.
Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data.  相似文献   

19.
Enzyme technology has significantly expanded in scope and impact over the past 10 years to include organic transformations in non-traditional environments. This is in part due to an increased understanding and capability of using enzyme catalysis in a wide variety of organic solvents, at interfaces, and at high temperatures and pressures. This review focuses on a relatively new but rapidly expanding research activity where in vitro enzyme catalysis is used for the synthesis of non-natural polyesters and polycarbonates. The inclination to use of enzymes for polymer synthesis has been fueled by a desire to carry out these reactions in the absence of heavy metals, at lower temperatures, and with increased selectivity. Aspects of this work that include enzyme-catalyzed step-growth condensation reactions, chain-growth ring-opening polymerizations, and corresponding transesterification of macromolecular substrates are discussed.  相似文献   

20.
Enzymatic synthesis of oligosaccharides   总被引:8,自引:0,他引:8  
Abstract: The biological interest of oligosaccharides is growing very rapidly, and necessitates the development of efficient synthesis reactions. The stereo- and regio-selectivity of enzyme catalysis is a key advantage in this field, as a complementary tool to the chemical approach. Two types of enzymes can be applied to the obtention of oligosaccharides: Hydrolytic enzymes, which can catalyze either reverse hydrolysis (thermodynamic control) or transglycosylation (kinetic control) synthesis reactions; and transferase enzymes, which can use simple carbohydrates from agricultural origin as glycosyl donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号