首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitomycins, produced by several Streptomyces strains, are potent anticancer antibiotics that comprise an aziridine ring fused to a tricyclic mitosane core. Mitomycins have remarkable ability to crosslink DNA with high efficiency. Despite long clinical history of mitomycin C, the biosynthesis of mitomycins, especially mitosane core formation, remains unknown. Here, we report in vitro characterization of three proteins, MmcB (acyl carrier protein), MitE (acyl AMP ligase), and MitB (glycosyltransferase) involved in mitosane core formation. We show that 3-amino-5-hydroxybenzoic acid (AHBA) is first loaded onto MmcB by MitE at the expense of ATP. MitB then catalyzes glycosylation of AHBA-MmcB with uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) to generate a key intermediate, GlcNAc-AHBA-MmcB, which contains all carbon and nitrogen atoms of the mitosane core. These results provide important insight into mitomycin biosynthesis.  相似文献   

2.
l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.  相似文献   

3.
The synthesis of some analogues of O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenylcarbamate, PUGNAc, an inhibitor of β-N-acetylglucosaminidases, is described. The analogues were tested against a range of β-N-acetylglucosaminidases to establish any biological activity. As well, the analogues were tested as inhibitors of a uridine diphosphate-N-acetyl-d-glucosamine: polypeptidyl transferase, OGT, a critical protein involved in the post-translational modification of nuclear and cytosolic proteins by N-acetyl-d-glucosamine.  相似文献   

4.
The role of dolichol monophosphate in sugar transfer   总被引:11,自引:0,他引:11  
The specificity of the transfer of monosaccharides from sugar nucleotides to dolichol monophosphate catalyzed by liver microsomes was studied. Besides uridine diphosphate glucose, uridine diphosphate-N-acetylglucosamine and guanosine diphosphate mannose were found to act as donors for the formation of the respective dolichol monophosphate sugars. Uridine diphosphate galactose and uridine diphosphate-N-acetylgalactosamine gave negative results.  相似文献   

5.
Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors.  相似文献   

6.
O-linked N-acetylglucosamine transferase (OGT) is an essential enzyme that catalyzes the covalent bonding of N-acetylglucosamine (GlcNAc) to the hydroxyl group of a serine or threonine in the target protein. It plays an important role in many important cellular physiological catalytic reactions. Here, we determine the binding mode and the binding free energy of the OGT product (uridine diphosphate, UDP) as well as the hydrogen-bond-dependent release mechanism using extensive molecular dynamic simulations. The Lys634, Asn838, Gln839, Lys842, His901, and Asp925 residues were identified to play a major role in the UDP stabilization in the active site of OGT, where hydrogen bonding and π-π interactions mainly occur. The calculations on the mutant forms support our results. Sixteen possible release channels were identified while the two most favorable channels were determined using random acceleration molecular dynamics (RAMD) simulations combined with the constant velocity pulling (PCV) method. The thermodynamic and dynamic properties as along with the corresponding mechanism were determined and discussed according to the umbrella sampling technique. For the most optimal channel, the main free energy barrier is 13?kcal/mol, which probably originates from the hydrogen bonds between UDP and the Ala896 and Asp925 residues. Moreover, the unstable hydrogen bonds and the rollback of the ligand likely cause the other two small obstacles. This work clarifies the ligand transport mechanism in the OGT enzymatic process and is a great resource for designing inhibitors based on UDP or UDP-GlcNAc.  相似文献   

7.
Nucleoside hydrolases catalyze the cleavage of N-glycosidic bonds in nucleosides, yielding ribose and the respective bases. While nucleoside hydrolase activity has not been detected in mammalian cells, many protozoan parasites rely on nucleoside hydrolase activity for salvage of purines and/or pyrimidines from their hosts. In contrast, uridine phosphorylase is the key enzyme of pyrimidine salvage in mammalian hosts and many other organisms. We show here that the open reading frame (ORF) YDR400w of Saccharomyces cerevisiae carries the gene encoding uridine hydrolase (URH1). Disruption of this gene in a conditionally pyrimidine-auxotrophic S. cerevisiae strain, which is also deficient in uridine kinase (urk1), leads to the inability of the mutant to utilize uridine as the sole source of pyrimidines. Protein extracts of strains overexpressing YDR400w show increased hydrolase activity only with uridine and cytidine, but no activity with inosine, adenosine, guanosine, and thymidine as substrates, demonstrating that ORF YDR400w encodes a uridine-cytidine N-ribohydrolase. Expression of a homologous cDNA from a protozoan parasite (Crithidia fasciculata) in a ura3 urk1 urh1 mutant is sufficient to restore growth on uridine. Growth can also be restored by expression of a human uridine phosphorylase cDNA. Yeast strains expressing protozoan N-ribohydrolases or host phosphorylases could therefore become useful tools in drug screens for specific inhibitors.  相似文献   

8.
Microsomal membrane preparations from maize (Zea mays L., inbred A636) endosperm cultures contained enzymes that transferred sugar moieties from uridine diphosphate-N-acetylglucosamine, guanosine diphosphate-mannose, and uridine diphosphate-glucose to dolichol-phosphate. These enzyme activities were characterized with respect to detergent and pH optima, substrate kinetic constants, and product and antibiotic inhibition constants. It was demonstrated by mild acid hydrolysis and high performance liquid chromatography that the products of the N-acetylglucosamine transferases were N-acetylglucosamine-pyrophosphoryl-dolichol and N,N′-diacetyl-chitobiosyl-pyrophosphoryl-dolichol and that the product of the mannose transferase was mannosyl-phosphoryl-dolichol. A large proportion of the products of the glucose transferase activity was stable to mild acid hydrolysis. However, the proportion that was labile was identified as glucosyl-phosphoryl-dolichol. Rate zonal sedimentation and isopycnic banding in linear sucrose density gradients in the presence of 1 millimolar ethylenediaminetetraacetic acid indicated that the glycosyltransferase activities were located in the endoplasmic reticulum. The glycosyltransferases were not solubilized by 500 millimolar KCl or by sequential washes with tris-(hydroxymethyl)aminomethane and water, treatments that release peripheral membrane proteins. Solubilization was achieved with low concentrations of Triton X-100. When sealed microsomal vesicles were incubated with trypsin for 30 minutes in absence of detergent, the activity of N-acetylglucosaminyl-transferase was substantially reduced, while the activity of the glucosyl-transferase was somewhat reduced. Activity of the mannosyl-transferase was resistant to inactivation by incubation with trypsin unless Triton was present.  相似文献   

9.
Plant seed lectins play a defense role against plant-eating animals. Here, GalNAc-specific Vicia villosa B4 lectin was found to inhibit hydrolysis of UDP-GalNAc by animal nucleotide pyrophosphatases, which are suggested to regulate local levels of nucleotide sugars in cells. Inhibition was marked at low concentrations of UDP-GalNAc, and was reversed largely by the addition of GalNAc to the reaction mixture. In contrast, lectin inhibited enzymatic hydrolysis of other nucleotide sugars, such as UDP-Gal and UDP-GlcNAc, only to a small extent, and GalNAc did not affect such an inhibition. The binding constant of the lectin for UDP-GalNAc was as high as 2.8×105 M?1 at 4°C, whereas that for GalNAcα-1-phosphate was 1.3×105 M?1. These findings indicate that lectin inhibition of pyrophosphatase activity toward low concentrations of UDP-GalNAc arises mainly from competition between lectin and enzyme molecules for UDP-GalNAc. This type of inhibition was also observed to a lesser extent with GalNAc-specific Wistaria floribunda lectin, but not apparently with GalNAc-specific soybean or Dolichos biflorus lectin. Thus, V. villosa B4 lectin shows unique binding specificity for UDP-GalNAc and has the capacity to modulate UDP-GalNAc metabolism in animal cells.  相似文献   

10.
The Methanococcus maripaludis MMP0352 protein belongs to an oxidoreductase family that has been proposed to catalyze the NAD+-dependent oxidation of the 3′′ position of uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide. The heterologously expressed MMP0352 protein was purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent. This enzyme was used to develop a fixed endpoint fluorometric method to analyze UDP-GlcNAc. The enzyme is highly specific for this acetamido sugar nucleotide, and the procedure had a detection limit of 0.2 μM UDP-GlcNAc in a 1-ml sample. Using the method of standard addition, UDP-GlcNAc concentrations were measured in deproteinized extracts of Escherichia coli, Saccharomyces cerevisiae, and HeLa carcinoma cells. Equivalent concentrations were determined by both enzymatic and chromatographic analyses, validating this method. This procedure can be adapted for the high-throughput analysis of changes in cellular UDP-GlcNAc concentrations in time series experiments or inhibitor screens.  相似文献   

11.
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved ‘transient keto intermediate’ mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.  相似文献   

12.
Kowal P  Wang PG 《Biochemistry》2002,41(51):15410-15414
Plesiomonas shigelloides is a ubiquitous waterborne pathogen responsible for diseases such as diarrhea and bacillary dysentery, commonly afflicting infants and children. This bacterium is endowed with an O-antigen gene cluster consisting of 10 consecutive reading frames. One of these, designated wbgU (orf3), has been overexpressed and biochemically characterized to show that it encodes a uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) C4 epimerase, only the second microbial enzyme characterized to have this activity. Epimerization is an equilibrium reaction resulting in a 70:30 ratio of UDP-GlcNAc to uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc), irrespective of the initial substrate. The K(m) values for UDP-GalNAc and UDP-GlcNAc are 131 microM and 137 microM, respectively. WbgU is also capable of converting nonacetylated derivatives but with much lower efficiency. It contains a tightly bound nicotinamide adenine dinucleotide [NAD(H)] molecule and requires no other cofactors for activity. We propose here that this enzyme catalyzes the first of the three transformations in the biosynthetic pathway of 2-acetamino-2-deoxy-L-altruronic acid, an unusual sugar present in the O-specific side chains of lipopolysaccharide of P. shigelloides O17 and its close relative Escherichia coli Sonnei.  相似文献   

13.
Uridine diphospho glucose (UDP-Glc) and uridine diphospho N-acetylglucosamine (UDP-GlcNAc), modified in the uridine moiety by either periodate oxidation of the ribose ring or substitution at position 5 of the uracil ring with fluorine, have been tested as potential inhibitors of glucosyl monophosphoryl dolichol (Glc-P-Dol) or N,N-diacetylchitobiosyl pyrophosphoryl dolichol [GlcNAc)2-PP-Dol) assembly in chick embryo cell membranes. The periodate oxidised sugar nucleotides inhibited glycosyl transfer from their respective natural counterparts by 50% at 230 micron periodate oxidised UDP-Glc and 70 micron periodate oxidised UDP-GlcNAc respectively. Inhibition in both cases was irreversible and addition of exogenous Dol-P stimulated only the residual non-inhibited reaction. Periodate oxidised UDP-GlcNAc preferentially inhibited the transfer of GlcNAc to GlcNac-PP-Dol. The sugar nucleotide containing 5-fluorouridine were, on the other hand, alternative substrates for Glc-P-Dol or (GlcNAc)2-PP-Dol synthesis. FUDP-Glc was a good substrate for Glc-P-Dol formation; having Km and Vmax values equal to those of UDP-Glc, whereas FUDP-GlcNAc was a less efficient substrate for the formation of (GlcNAc)2-PP-Dol; having Km and Vmax values one half and one third respectively of those of UDP-GlcNAc.  相似文献   

14.
The growth of corn (Zea mays) roots and barley (Hordeum vulgare) coleoptiles is sensitive to the presence of external d-glucosamine and d-galactose. In order to investigate this effect, tissues were fed the radioactive monosaccharides at concentrations that ranged from those that were strongly inhibitory to those that had little influence on growth. At low concentrations, d-glucosamine is converted to uridine diphosphate-N-acetyl-d-glucosamine, phosphate esters of N-acetylglucosamine, and free N-acetylglucosamine. As the external concentrations were increased, the pool levels of each of these metabolites rose several fold; and, in corn roots, two unidentified compounds, which had not been detected previously, began to accumulate in the tissues. The major products of d-galactose metabolism were uridine diphosphate-d-galactose and d-galactose 1-phosphate at all the concentrations tested. Both these compounds showed a marked increase as the external galactose concentrations were raised to inhibitory levels. The experiments indicate that efficient pathways exist in plants for the metabolism of d-glucosamine and d-galactose. These pathways, however, do not appear to be under strict control, so that metabolites accumulate in unusually high amounts and presumably interfere competitively with normal carbohydrate metabolism.  相似文献   

15.
16.
17.
Uridine 5′-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a natural UDP-monosaccharide donor for bacterial glycosyltransferases, while uridine 5′-diphosphate N-trifluoacetyl glucosamine (UDP-GlcNTFA) is its synthetic mimic. The chemoenzymatic synthesis of UDP-GlcNAc and UDP-GlcNTFA was attempted by three recombinant enzymes. Recombinant N-acetylhexosamine 1-kinase was used to produce GlcNAc/GlcNTFA-1-phosphate from GlcNAc/GlcNTFA. N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12 MG1655 was used to produce UDP-GlcNAc/GlcNTFA from GlcNAc/GlcNTFA-1-phosphate. Inorganic pyrophosphatase from E. coli K12 MG1655 was used to hydrolyze pyrophosphate to accelerate the reaction. The above enzymes were expressed in E. coli BL21 (DE3) and purified, respectively, and finally mixed in one-pot bioreactor. The effects of reaction conditions on the production of UDP-GlcNAc and UDP-GlcNTFA were characterized. To avoid the substrate inhibition effect on the production of UDP-GlcNAc and UDP-GlcNTFA, the reaction was performed with fed batch of substrate. Under the optimized conditions, high production of UDP-GlcNAc (59.51?g/L) and UDP-GlcNTFA (46.54?g/L) were achieved in this three-enzyme one-pot system. The present work is promising to develop an efficient scalable process for the supply of UDP-monosaccharide donors for oligosaccharide synthesis.  相似文献   

18.
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.  相似文献   

19.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

20.
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号