首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated that fatty acid amide hydrolase, the enzyme responsible for the metabolism of anandamide, is inhibited by the acidic non-steroidal anti-inflammatory drug (NSAID) ibuprofen with a potency that increases as the assay pH is reduced. Here we show that (R) -, (S) - and (R, S) -flurbiprofen, indomethacin and niflumic acid show similar pH-dependent shifts in potency to that seen with ibuprofen. Thus, (S) -flurbiprofen inhibited 2 μM [3 H]anandamide metabolism with IC 50 values of 13 and 50 μM at assay pH values of 6 and 8, respectively. In contrast, the neutral compound celecoxib was a weak fatty acid amide hydrolase inhibitor and showed no pH dependency (IC 50 values ~300 μM at both assay pH). The cyclooxygenase-2-selective inhibitors nimesulide and SC-58125 did not inhibit fatty acid amide hydrolase activity at either pH. The data are consistent with the conclusion that the non-ionised forms of the acidic NSAIDs are responsible for the inhibition of fatty acid amide hydrolase.  相似文献   

2.
Previous studies have demonstrated that fatty acid amide hydrolase, the enzyme responsible for the metabolism of anandamide, is inhibited by the acidic non-steroidal anti-inflammatory drug (NSAID) ibuprofen with a potency that increases as the assay pH is reduced. Here we show that (R)-, (S)- and (R,S)-flurbiprofen, indomethacin and niflumic acid show similar pH-dependent shifts in potency to that seen with ibuprofen. Thus, (S)-flurbiprofen inhibited 2 microM [3H]anandamide metabolism with IC50 values of 13 and 50 microM at assay pH values of 6 and 8, respectively. In contrast, the neutral compound celecoxib was a weak fatty acid amide hydrolase inhibitor and showed no pH dependency (IC50 values approximately 300 microM at both assay pH). The cyclooxygenase-2-selective inhibitors nimesulide and SC-58125 did not inhibit fatty acid amide hydrolase activity at either pH. The data are consistent with the conclusion that the non-ionised forms of the acidic NSAIDs are responsible for the inhibition of fatty acid amide hydrolase.  相似文献   

3.
A series of oxime carbamates have been identified as potent inhibitors of fatty acid amide hydrolase (FAAH), an important regulatory enzyme of the endocannabinoid signaling system. Kinetic analysis indicates that they behave as non-competitive, reversible inhibitors, and show remarkable selectivity for FAAH over the other components of the endocannabinoid system.  相似文献   

4.
A novel series of heterocyclic sulfoxides and sulfones was prepared and examined as potential inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for inactivation of neuromodulating fatty acid amides including anandamide and oleamide.  相似文献   

5.
Fatty acid amide hydrolase (FAAH), also referred to as oleamide hydrolase and anandamide amidohydrolase, is a serine hydrolase responsible for the degradation of endogenous oleamide and anandamide, fatty acid amides that function as chemical messengers. FAAH hydrolyzes a range of fatty acid amides, and the present study examines the relative rates of hydrolysis of a variety of natural and unnatural fatty acid primary amide substrates using pure recombinant rat FAAH.  相似文献   

6.
Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.g. liver, brain, heart, plasma). Feeding also increases the levels of other unsaturated fatty acid ethanolamides (FAEs) (e.g. linoleoylethanolamide) without affecting those of saturated FAEs (e.g. palmitoylethanolamide). Feeding-induced OEA mobilization is accompanied by enhanced accumulation of OEA-generating N-acylphosphatidylethanolamines (NAPEs) increased activity and expression of the OEA-synthesizing enzyme NAPE-phospholipase D, and decreased activity and expression of the OEAdegrading enzyme fatty acid amide hydrolase. Immunostaining studies revealed that NAPE-phospholipase D and fatty acid amide hydrolase are expressed in intestinal enterocytes and lamina propria cells. Collectively, these results indicate that nutrient availability controls OEA mobilization in the mucosa of the proximal intestine through a concerted regulation of OEA biosynthesis and degradation.  相似文献   

7.
Self-consistent charge density functional tight binding (SCC-DFTB) is a promising method for hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of enzyme-catalyzed reactions. The acylation reaction of fatty acid amide hydrolase (FAAH), a promising drug target, was investigated by applying a SCC-DFTB/CHARMM27 scheme. Calculated potential energy barriers resulted in reasonable agreement with experiments for oleamide (OA) and oleoylmethyl ester (OME) substrates, outperforming previous calculations performed at the PM3/CHARMM22 level. Furthermore, the experimental preference of FAAH in hydrolyzing OA faster than OME was adequately reproduced by calculations. All these findings indicate that the SCC-DFTB/CHARMM27 approach can be successfully applied to mechanistic investigations of FAAH-catalyzed reactions.  相似文献   

8.
Fatty acid amide hydrolase is an integral membrane protein that hydrolyzes a novel and growing class of neuromodulatory fatty acid molecules, including anandamide, 2-arachidonyl glycerol, and oleamide. This activity is inhibited by serine and cysteine reactive agents, suggesting that the active site contains a serine or cysteine residue. Therefore serine and cysteine residues were mutated to alanine and the effects on activity were determined. Mutants were prepared using site-directed mutagenesis methods and expressed in COS-7 cells. Serine mutations S217A and S241A completely abolished enzymatic activity. Mutants S152A and C249A had no effect on activity, while S218A showed a slight decrease in activity. To confirm these results biochemically, the mutant enzymes were reacted with the irreversible inhibitor [(14)C]-diisopropyl fluorophosphate. All of the mutants except S217A and S241A were labeled. We therefore confirm that fatty acid amide hydrolase is a serine hydrolase and propose that both Ser-217 and Ser-241 are essential for enzyme activity.  相似文献   

9.
Acetaminophen (paracetamol) is a popular domestic analgesic and antipyretic agent with a weak anti-inflammatory action and a low incidence of adverse effects as compared with aspirin and other non-steroidal anti-inflammatory drugs. Here we show that acetaminophen, following deacetylation to its primary amine, is conjugated with arachidonic acid in the brain and the spinal cord to form the potent TRPV1 agonist N-arachidonoylphenolamine (AM404). This conjugation is absent in mice lacking the enzyme fatty acid amide hydrolase. AM404 also inhibits purified cyclooxygenase (COX)-1 and COX-2 and prostaglandin synthesis in lipopolysaccharide-stimulated RAW264.7 macrophages. This novel metabolite of acetaminophen also acts on the endogenous cannabinoid system, which, together with TRPV1 and COX, is present in the pain and thermoregulatory pathways. These findings identify fatty acid conjugation as a novel pathway for drug metabolism and provide a molecular mechanism for the occurrence of the analgesic N-acylphenolamine AM404 in the nervous system following treatment with acetaminophen.  相似文献   

10.
Fatty acid synthetase from goat mammary gland was subjected to limited proteolysis by trypsin and elastase. Both proteolytic enzymes selectively cleaved the chain-terminating thioester hydrolase component from the enzyme complex, leaving all other partial activities intact in the core peptides. Trypsin, but not elastase, caused extensive degradation of the released thioester hydrolase. The released thioester hydrolase could be purified to homogeneity by gel filtration. The molecular weight was estimated as 29 000 and the enzyme showed only significant hydrolytic activity toward long-chain acyl-CoA esters. The core peptides retained the ability to synthesize medium-chain acyl-CoA esters in the presence of 2,6-di-O-methyl-alpha-cyclodextrin. The results conclusively show that the terminating thioester hydrolase of goat mammary-gland fatty acid synthetase is not involved in termination of medium-chain-length fatty acid synthesis by this enzyme.  相似文献   

11.
To realize the promise of genomics-based therapeutics, new methods are needed to accelerate the discovery of small molecules that selectively modulate protein activity. Toward this end, advances in combinatorial synthesis have provided unprecedented access to large compound libraries of considerable structural complexity and diversity, shifting the bottleneck in drug discovery to the development of efficient screens for protein targets. Screening for reversible enzyme inhibitors typically requires extensive target-specific work, including protein expression and purification, as well as the development of specific substrate assays. Here we report a proteomic method for the discovery of reversible enzyme inhibitors that avoids these steps. We show that competitive profiling of a library of candidate serine hydrolase inhibitors in complex proteomes with activity-based chemical probes identifies nanomolar reversible inhibitors of several enzymes simultaneously, including the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH), triacylglycerol hydrolase (TGH) and an uncharacterized membrane-associated hydrolase that lacks known substrates. The strategy tests inhibitors against numerous enzymes in parallel, assigning both potency and selectivity factors to each agent. In this way, promiscuous inhibitors were readily rejected in favor of equally potent compounds with 500-fold or greater selectivity for their targets.  相似文献   

12.
The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor alpha into the bronchoalveolar lavage (BAL) fluid, which was not accompanied by epithelial cell injury. The treatment, however, did not change significantly the levels of anandamide and the related compound palmitoylethanolamide in the cell-free fraction of the BAL fluid. The activities of the anandamide synthetic enzymes N-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity.  相似文献   

13.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), are hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase. Moreover, we found another amidohydrolase catalyzing the same reaction only at acidic pH, and we purified it from rat lung (Ueda, N., Yamanaka, K., and Yamamoto, S. (2001) J. Biol. Chem. 276, 35552-35557). Here we report complementary DNA cloning and functional expression of the enzyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" from human, rat, and mouse. The deduced primary structures revealed that NAAA had no homology to fatty acid amide hydrolase but belonged to the choloylglycine hydrolase family. Human NAAA was essentially identical to a gene product that had been noted to resemble acid ceramidase but lacked ceramide hydrolyzing activity. The recombinant human NAAA overexpressed in HEK293 cells hydrolyzed various N-acylethanolamines with N-palmitoylethanolamine as the most reactive substrate. Most interestingly, a very low ceramide hydrolyzing activity was also detected with NAAA, and N-lauroylethanolamine hydrolyzing activity was observed with acid ceramidase. By the use of tunicamycin and endoglycosidase, NAAA was found to be a glycoprotein. Furthermore, the enzyme was proteolytically processed to a shorter form at pH 4.5 but not at pH 7.4. Expression analysis of a green fluorescent protein-NAAA fusion protein showed a lysosome-like distribution in HEK293 cells. The organ distribution of the messenger RNA in rats revealed its wide distribution with the highest expression in lung. These results demonstrated that NAAA is a novel N-acylethanolamine-hydrolyzing enzyme that shows structural and functional similarity to acid ceramidase.  相似文献   

14.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   

15.
Saghatelian A  Cravatt BF 《Life sciences》2005,77(14):1759-1766
Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.  相似文献   

16.
Thiadiazolopiperazinyl ureas as inhibitors of fatty acid amide hydrolase   总被引:1,自引:0,他引:1  
A series of thiadiazolopiperazinyl aryl urea fatty acid amide hydrolase (FAAH) inhibitors is described. The molecules were found to inhibit the enzyme by acting as mechanism-based substrates, forming a covalent bond with Ser241. SAR and PK properties are presented.  相似文献   

17.
Fatty acid amides constitute a large and diverse class of lipid transmitters that includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The magnitude and duration of fatty acid amide signaling are controlled by enzymatic hydrolysis in vivo. Fatty acid amide hydrolase (FAAH) activity in mammals has been primarily attributed to a single integral membrane enzyme of the amidase signature (AS) family. Here, we report the functional proteomic discovery of a second membrane-associated AS enzyme in humans that displays FAAH activity. The gene that encodes this second FAAH enzyme was found in multiple primate genomes, marsupials, and more distantly related vertebrates, but, remarkably, not in a number of lower placental mammals, including mouse and rat. The two human FAAH enzymes, which share 20% sequence identity and are referred to hereafter as FAAH-1 and FAAH-2, hydrolyzed primary fatty acid amide substrates (e.g. oleamide) at equivalent rates, whereas FAAH-1 exhibited much greater activity with N-acyl ethanolamines (e.g. anandamide) and N-acyl taurines. Both enzymes were sensitive to the principal classes of FAAH inhibitors synthesized to date, including O-aryl carbamates and alpha-keto heterocycles. These data coupled with the overlapping, but distinct tissue distributions of FAAH-1 and FAAH-2 suggest that these proteins may collaborate to control fatty acid amide catabolism in primates. The apparent loss of the FAAH-2 gene in some lower mammals should be taken into consideration when extrapolating genetic or pharmacological findings on the fatty acid amide signaling system across species.  相似文献   

18.
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.  相似文献   

19.
The fatty acid amide (FAA) class of signaling lipids modulates a number of neurobehavioral processes in mammals, including pain, sleep, feeding, and locomotor activity. Representative FAAs include the endogenous cannabinoid anandamide and the sleep-inducing lipid oleamide. Despite activating several neuroreceptor systems in vitro, most FAAs produce only weak and transient behavioral effects in vivo, presumably due to their expeditious catabolism. This review focuses on one enzyme, fatty acid amide hydrolase (FAAH) that appears to play a major role in regulating the amplitude and duration of FAA signals in vivo. In particular, we will highlight a series of recent papers that have investigated the physiological functions of the mouse and human FAAH enzymes. Collectively, these studies promote FAAH as a central component of FAA signaling pathways, especially those mediated by the endocannabinoid anandamide, and suggest that this enzyme may represent an attractive pharmaceutical target for the treatment of pain and related neurophysiological disorders.  相似文献   

20.
Modulation of anxiety through blockade of anandamide hydrolysis   总被引:22,自引:0,他引:22  
The psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol, produces in humans subjective responses mediated by CB1 cannabinoid receptors, indicating that endogenous cannabinoids may contribute to the control of emotion. But the variable effects of Delta(9)-tetrahydrocannabinol obscure the interpretation of these results and limit the therapeutic potential of direct cannabinoid agonists. An alternative approach may be to develop drugs that amplify the effects of endogenous cannabinoids by preventing their inactivation. Here we describe a class of potent, selective and systemically active inhibitors of fatty acid amide hydrolase, the enzyme responsible for the degradation of the endogenous cannabinoid anandamide. Like clinically used anti-anxiety drugs, in rats the inhibitors exhibit benzodiazepine-like properties in the elevated zero-maze test and suppress isolation-induced vocalizations. These effects are accompanied by augmented brain levels of anandamide and are prevented by CB1 receptor blockade. Our results indicate that anandamide participates in the modulation of emotional states and point to fatty acid amide hydrolase inhibition as an innovative approach to anti-anxiety therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号