首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Organization of the adenyl cyclase (cya) locus of Rhizobium meliloti   总被引:2,自引:0,他引:2  
  相似文献   

4.
The Escherichia coli cya gene has been fused in the same register with the lacZ gene. The corresponding hybrid cya-lacZ gene is expressed as a bifunctional protein that exhibits both adenylate cyclase and beta-galactosidase activities, thus proving that cya is the structural gene for adenylate cyclase. The hybrid protein was purified to homogeneity and has been used to raise antibodies that recognize wild-type adenylate cyclase. Finally, the protein has been submitted to amino acid sequence analysis. It has been found that the first ten amino acids fit the predicted sequence obtained from DNA sequence analysis, thus substantiating the prediction that the cya translation initiation codon is UUG .  相似文献   

5.
6.
An adenyl cyclase deletion mutant (cya) of E. coli failed to exhibit a heat-shock response even after 30 min at 42 degrees C. Under these conditions, heat-shock protein synthesis was induced by 10 min in the wild-type strain. These results suggest that synthesis of heat-shock proteins in E. coli requires the cya gene. This hypothesis is supported by the finding that a presumptive cyclic AMP receptor protein (CRP) binding site exists within the promoter region of the E. coli htpR gene. In spite of the absence of heat-shock protein synthesis, when treated at 50 degrees C, the cya mutant is relatively more heat resistant than wild type. Furthermore, when heat shocked at 42 degrees C prior to exposure at 50 degrees C, the cya mutant developed thermotolerance. These results suggest that heat-shock protein synthesis is not essential for development of thermotolerance in E. coli.  相似文献   

7.
Abstract A second adenylate cyclase ( cya2 ) gene was isolated from a Rhizobium meliloti F34 gene bank. Complemented E. coli Acya mutants were capable of utilizing a number of, but not all, carbon sources known to be regulated by cAMP. DNA hybridization studies showed cya2 to be unique to R. meliloti strains. The cya2 nucleotide sequence was determined and found to encode a protein of 363 amino acids. Residues were identified within the C-terminal domain which are conserved in both eukaryotic adenylate and guanylate cyclases, including a putative ATP binding site. Similiar residues were also found in the prokaryotic R. meliloti Cya1 protein. A R. meliloti cyal/cya2 double mutant was constructed and characterized; however, cAMP production was still observed in this strain indicating the presence of a third cya gene.  相似文献   

8.
M Katayama  Y Wada    M Ohmori 《Journal of bacteriology》1995,177(13):3873-3878
Molecular cloning of the structural gene for adenylate cyclase (cya) of the cyanobacterium Anabaena cylindrica was carried out by complementation of an Escherichia coli strain defective in the cya gene. The cya-defective strain produced significant amounts of cyclic AMP when it was transformed with the cya gene isolated from A. cylindrica. This gene encodes a polypeptide consisting of 502 amino acid residues (molecular weight, 55,300). The deduced primary protein structure showed that the carboxyl-terminal region of the adenylate cyclase of A. cylindrica shows strong structural similarity to the conserved regions of the adenylate cyclases of various eukaryotes. No similarity was found between the amino acid sequences of the cya gene of A. cylindrica and that of E. coli. A hydropathy plot suggests that this protein has two hydrophobic regions, a transmembrane span and a signal peptide. An antiserum specific to this adenylate cyclase was prepared by immunizing a rabbit with a glutathione S-transferase-adenylate cyclase fusion protein expressed in E. coli. This antiserum recognized a 55-kDa protein in Anabaena cell lysates. Subcellular fractionation analysis showed that A. cylindrica adenylate cyclase localized in the thylakoid membrane.  相似文献   

9.
A Roy  C Haziza    A Danchin 《The EMBO journal》1983,2(5):791-797
The regulatory region of the cya gene from Escherichia coli has been characterized by nucleotide sequence analysis and genetic approaches. Two promoters, P1 and P2, organized in that order with respect to the beginning of the cya open reading frame, were identified. Using cya-lac operon and protein fusions, it was possible to show that both promoters are active in vivo. P1 activity seemed sensitive to catabolite repression whereas activity of the stronger promoter, P2, did not respond to inhibition by glucose. No effect of cAMP or its receptor, catabolite activator protein (CAP), could be found although the DNA sequence reveals a consensus CAP site downstream of P2. The 548 nucleotides situated at the 3' end of the sequence carry an open reading frame which can tentatively be assigned to the beginning of adenylate cyclase. Among noteworthy features of the corresponding sequence are an UUG codon as the putative start site of cyclase, and a long hydrophobic stretch of amino acids resembling leader peptides in secreted or membrane proteins.  相似文献   

10.
Site-specific recombination at the plasmid ColE1 cer site requires the Escherichia coli chromosomal gene xerC. The xerC gene has been localized to the 85-min region of the E. coli chromosome, between cya and uvrD. The nucleotide sequences of the xerC gene and flanking regions have been determined. The xerC gene encodes a protein with a calculated molecular mass of 33.8 kDa. This protein has substantial sequence similarity to the lambda integrase family of site-specific recombinases and is probably the cer recombinase. The xerC gene is expressed as part of a multicistronic unit that includes the dapF gene and two other open reading frames.  相似文献   

11.
Analysis of the cya locus of Escherichia coli   总被引:6,自引:0,他引:6  
A H Koop  M Hartley  S Bourgeois 《Gene》1984,28(2):133-146
A 9500-bp DNA segment containing the adenylate cyclase gene (cya) of Escherichia coli has been isolated and analyzed. Four large proteins are encoded within this fragment - the adenylate cyclase protein (92 kDal), two proteins of unknown function (37 and 32 kDal), and a part of the uvrD-coded protein. Various truncated adenylate cyclase proteins, made from cya genes having as much as 60% of their carboxy-terminal end deleted, are sufficient to complement cya- hosts. When these truncated cya genes are present on a multicopy plasmid in a cya- host, the synthesis of beta-galactosidase is still regulated by glucose. The "maxicell" technique was used to visualize the four proteins encoded by this region and some of the truncated adenylate cyclase proteins.  相似文献   

12.
The Escherichia coli K-12 gene coding for the nucleoid-associated protein HNS was cloned together with 5.6 kb of downstream DNA in the vector pACYC184. The cloned DNA complemented a mutation in the osmZ locus of E. coli, which codes for HNS. However, the multicopy plasmid harboring the cloned sequence was found to be mutagenic and to produce at high frequency mutations that mapped to the E. coli cya gene, which codes for adenylate cyclase. Acquisition of the cya mutations was independent of RecA. These mutations were phenotypically suppressed by providing the cells with exogenous cyclic AMP and were complemented in trans by a plasmid carrying an active copy of the cya gene. A deletion analysis of the cloned sequences showed that DNA downstream of the gene coding for HNS was also required for the mutagenic effect of cya and had a role in regulating the expression of the osmZ-dependent proU locus. These sequences appear to contain at least two genetically active regions.  相似文献   

13.
The sfsA gene was identified as one of the sfs genes the over-expression of which stimulates maltose fermentation of the Mal- Escherichia coli strain MK2001 (crp*1, cya:Km(r)). Expression from the malPQ promoter, which was measured using a chromosomally integrated malPp-lacZ fusion, was induced by over-expressing the sfsA gene in the crp*1, cya:Km(r) strain. The level of the MalE protein was increased in crp*1, cya:Km(r) cells over-producing SfsA. The SfsA protein was purified to homogeneity and tested for DNA binding activity. The purified SfsA protein binds to DNA non-specifically. All these results may suggest that SfsA functions as a DNA binding protein to induce the mal genes in coordination with CRP*1.  相似文献   

14.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

15.
16.
17.
The effect of cya and crp mutations on the expression of the activity of nucleoside catabolizing genes has been studied in Escherichia coli. It is found that cya and crp mutants lose their ability to grow on nucleosides as carbon sources in spite of the preservation of the basal levels of nucleoside catabolizing enzymes, found in cell-free extracts of cya and crp mutants. It is shown that cya and crp mutations completely release the influence of the regulatory gene cytR on the activity of uridine phosphorylase (udp gene) and thymidine phosphorylase (tpp gene). On this ground it is assumed that the cytR gene product acts at the level of promotors of the corresponding structural genes, causing their insensitivity to the positive action of cAMP--CRP complex. The same data concerning the effect of cya and crp mutations on cytR regulation have been reported [8], but these authors favoured the hypothesis that the cytR gene product is a repressor protein, which binds to the specific operator.  相似文献   

18.
A 5.0-kilobase-pair HindIII fragment of Bradyrhizobium japonicum DNA containing the cya gene which encodes adenylate cyclase was isolated as an insert in pBR322, using marker rescue of the maltose-negative phenotype of an Escherichia coli cya mutant for identification. The isolated B. japonicum DNA fragment was capable of reversing the pleiotropic phenotype of cya mutations when inserted in either orientation in the HindIII site of pBR322. The complemented E. coli strains produced high levels of cyclic AMP. No sequence homology between the B. japonicum cya gene and that of E. coli was detected by hybridization analysis.  相似文献   

19.
20.
D C Au  H R Masure  D R Storm 《Biochemistry》1989,28(7):2772-2776
A 2.7-kb cya A gene fragment encoding the amino-terminal end of the calmodulin-sensitive adenylate cyclase from Bordetella pertussis has been placed under the control of the lac promoter for expression in Escherichia coli. Following induction with isopropyl beta-D-thiogalactoside, calmodulin-sensitive adenylate cyclase activity was detected in a cell extract from E. coli. The expression vector directed the synthesis of a 90-kDa polypeptide that was recognized by rabbit polyclonal antibodies raised against the catalytic subunit of B. pertussis adenylate cyclase. Inspection of the deduced amino acid sequence of the cya A gene product revealed a sequence with homology to consensus sequences for an ATP-binding domain found in many ATP-binding proteins. On the basis of the analysis of nucleotide binding proteins, a conserved lysine residue has been implicated in the binding of ATP. A putative ATP-binding domain in the B. pertussis adenylate cyclase possesses an analogous lysine residue at position 58. To test whether lysine 58 of the B. pertussis adenylate cyclase is a crucial residue for enzyme activity, it was replaced with methionine by oligonucleotide-directed mutagenesis. E. coli cells were transformed with the mutant cya A gene, and the expressed gene product was characterized. The mutant protein exhibited neither basal nor calmodulin-stimulated enzyme activity, indicating that lysine 58 plays a critical role in enzyme catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号