首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alkylation-induced germ cell mutagenesis in the mouse versus Drosophila is compared based on data from forward mutation assays (specific-locus tests in the mouse and in Drosophila and multiple-locus assays in the latter species) but not including assays for structural chromosome aberrations. To facilitate comparisons between mouse and Drosophila, forward mutation test results have been grouped into three categories. Representatives of the first category are MMS (methyl methanesulfonate) and EO (ethylene oxide), alkylating agents with a high s value which predominantly react with ring nitrogens in DNA. ENU (N-ethyl-N-nitrosourea), MNU (N-methyl-N-nitrosourea), PRC (procarbazine), DEN (N-nitrosodiethylamine), and DMN (N-nitrosodimethylamine) belong to the second category. These agents have in common a considerable ability for modification at oxygens in DNA. Cross-linking agents (melphalan, chlorambucil, hexamethylphosphoramide) from the third category.The most unexpected, but encouraging outcome of this study is the identification of common features for three vastly different experimental indicators of genotoxicity: hereditary damage in Drosophila males, genetic damage in male mice, and tumors (TD50 estimates) in rodents. Based on the above three category classification scheme the following tentative conclusions are drawn. Monofunctional agents belonging to category 1, typified by MMS and EO, display genotoxic effects in male germ cell stages that have passed meiotic division. This phenomenon seems to be the consequence of a repair deficiency during spermiogenesis for a period of 3–4 days in Drosophila and 14 days in the mouse. We suggest that the reason for the high resistance of premeiotic stages, and the generally high TD50 estimates observed for this class in rodents, is the efficient error-free repair of N-alkylation damage. If we accept this hypothesis, then the increased carcinogenic potential in rodents, seen when comparing category 2 (ENU-type mutagens) to category 1 (MMS-type mutagens), along with the ability of category 2 genotoxins to induce genetic damage in premeiotic stages, must presumably be due to their enhanced ability for alkylations at oxygens in DNA; it is this property that actually distinguishes the two groups from each other. In contrast to category 1, examination of class 2 genotoxins (ENU and DEN) in premeiotic cells of Drosophila gave no indication for a significant role of germinal selection, and also removal by DNA repair was less dramatic compared to MMS. Thus category 2 mutagens are expected to display activity in a wide range of both post- and premeiotic germ cell stages. A number of these agents have been demonstrated to be among the most potent carcinogens in rodents. In terms of both hereditary damage and the initiation of cancers (low TD50), cross-linking agents (category 3) comprise a considerable genotoxic hazard. Doubling doses for the mouse SLT have been determined for four cross-linking agents not requiring metabolic conversion and in all four cases the doubling doses for these agents were lower than those for MMS, DES and EMS. In support of this conclusion, two of 10 genotoxic agents, for which data on chromosomal aberrations were available for both somatic cells and germ cells in mice, were cross-linking agents and again the doubling dose estimates are lower than for monofunctional agents. Four cross-linking agents induced mutations in stem cell spermatogonia indicating that this type of agent can be active in a wide range of germ cell stages.Quite in contrast to what is generally observed in unicellular systems and in mammalian cells in culture, both cross-linking agents and MMS-type mutagens (high s value) predominantly produce deletion mutations in postmeiotic male germ cell stages. This is the uniform picture found for both Drosophila and the mouse. It is concluded that in vitro systems, in contrast to Drosophila germ cells, fail to predict this very intriguing feature of mouse germ line mutagenesis. In addition to their potential for induction of deletions and other rearrangements, cross-linking agents are among the most efficient inducers of mitotic recombination in Drosophila. Thus there are several mechanisms by which cross-linking agents may cause loss of heterozygosity for long stretches of DNA sequences, leading to expression of recessive genes. Since a substantial portion of agents used in the chemotherapy of cancers have cross-linking potential, the potential hazards of hereditary damage and cancers associated with this class of genotoxins should, in our opinion, receive more attention than they have in the past.  相似文献   

2.
J.B. Guttenplan   《Mutation research》1990,233(1-2):177-187
The relationships between DNA alkylation, DNA repair and mutagenesis by N-nitroso compounds in Salmonella were examined. DNA adducts formed by treatment of the bacteria with N-nitroso compounds were monitored. Critical to the study was establishing which adducts led to mutations. Two methods were employed. In one, correlations in the dose-responses for adducts and mutagenesis were sought. For instance O6-methyl- and -ethyl-guanine, in contrast to other adducts, exhibited thresholds in their accumulation in Salmonella DNA, and mutagenesis at GC base pairs also exhibited the same threshold, suggesting a dependence of mutagenesis on the O6-alkyguanines. In the second method, mutagenesis induced by different mutagens with overlapping adduct spectra was compared. For example, EMS and ENU generate similar ratios of adenine adducts, but only ENU produces thymine adducts, and only ENU induced AT-GC and AT-CG base changes. These observations suggested that ethylthymines led to these mutations. Furthermore, it was found that these mutations were largely dependent on the presence of the plasmid, pKM101, indicating that error-prone repair activity contributes importantly in their processing to mutations. When DNA adducts by N-nitrosopyrrolidine were examined it was found that only one major adduct was detected in an excision-repair-deficient strain, and that this adduct was not present in a repair-proficient strain. Mutagenesis was also greatly reduced in the proficient strain, suggesting that mutagenesis was dependent on this adduct. From the relationships between premutagenic adducts levels adducts. This calculation assumed an average distribution of adducts and mutations and required knowledge of the target size and the types of mutations that could lead to phenotypic changes. For the unrepaired O6-methyl- and -ethyl-guanines, and the O-ethylthymines the mutational efficiencies were high (ca. 30–70%), but for the N-nitrosopyrrolidine adduct it was low (ca. 1%). Initial studies were carried out on the mutational specificities of two higher homologue N-nitroso compounds (the N-nitroso-N-propyl- and N-butyl-nitroguanidines) in uvrB/pKM101 strains. This class of nitroso compounds is known to form similar DNA adducts as ENU. Their specificities were similar to that of N-nitroso-N-ethylurea at a high dose except the fraction of mutations at AT base pairs was reduced. The fraction of GC-CG transversions was although low, increased. The mutational specificities of N-nitroso-N-methylurea and N-nitrosopyrrolidine were significantly different from the specificity of ENU as would be expected from their different adduct distributions.  相似文献   

3.
The purpose of these guidelines is to provide concise guidance on the planning, performing and interpretation of studies to monitor groups or individuals exposed to genotoxic agents. Most human carcinogens are genotoxic but not all genotoxic agents have been shown to be carcinogenic in humans. Although the main interest in these studies is due to the association of genotoxicity with carcinogenicity, there is also an inherent interest in monitoring human genotoxicity independently of cancer as an endpoint.The most often studied genotoxicity endpoints have been selected for inclusion in this document and they are structural and numerical chromosomal aberrations assessed using cytogenetic methods (classical chromosomal aberration analysis (CA), fluorescence in situ hybridisation (FISH), micronuclei (MN)); DNA damage (adducts, strand breaks, crosslinking, alkali-labile sites) assessed using bio-chemical/electrophoretic assays or sister chromatid exchanges (SCE); protein adducts; and hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations. The document does not consider germ cells or gene mutation assays other than HPRT or markers of oxidative stress, which have been applied on a more limited scale.  相似文献   

4.
Strange goings-on in the mouse germ line   总被引:1,自引:0,他引:1  
Bridges BA 《DNA Repair》2003,2(11):1269-1272
It is a conventional paradigm that mutagens lead to changes in nucleotide sequence when the cell attempts to repair or replicate lesions in DNA (such as adducts or strand breaks) that have been produced by the mutagens or their metabolites. The resulting changes are located at (or very near) the sites of the initial damage. This is the underlying theory behind mutational spectra work, but how general is it in vivo? Work with ionising radiation has shown that there are interesting things going on in the mouse germ line that do not fall within the conventional paradigm. Mutations occur at certain sites remote from initial DNA damage and in greater than expected number. Bryn Bridges discusses some recent papers on mutational changes in the germ line of mice following exposure to chemical mutagens that suggest that such phenomena may not be confined to radiation.  相似文献   

5.
Abstract

The identification and quantitation of DNA adducts formed by reaction of genotoxic chemicals with DNA may provide direct evidence of exposure t o mutagens and carcinogens and may make possible a beginning of risk estimation based on Molecular Dosimetry approach.  相似文献   

6.
Dose-response relationships of genotoxic agents differ greatly depending on the agent and the endpoint being evaluated. Simple conclusions that genotoxic effects are linear cannot be applied universally. The shape of the molecular dose of DNA adducts varies from linear, to supralinear, to sublinear depending on metabolic activation and detoxication, and repair of individual types of DNA adducts. For mutagenesis and other genotoxicity endpoints, the dose-response reflects the molecular dose of each type of DNA adduct, cell proliferation, as well as endogenous factors that lead to mutagenesis such as the formation and repair of endogenous DNA adducts. These same factors are important when interpreting the shape of dose-response data for carcinogenesis of genotoxic agents, however, tumor background variability adds additional complexity. Endogenously formed DNA adducts may be identical to those formed by chemicals, as in the case of vinyl chloride and ethylene oxide, or they may be those associated with oxidative stress. Data presented in this paper demonstrate that the exogenous number of adducts induced by 5 days of exposure to 10 ppm vinyl chloride is only 2. 2-fold greater than that present as a steady-state amount in unexposed control rats. Similar data are shown for ethylene oxide. Extremely sensitive methods have been developed for measuring the molecular dose of genotoxins. These methods can detect DNA adducts as low as 1 per 10(9) to 10(10). However, in view of the high number of endogenous DNA adducts that are present in all cells, it is unlikely that causal relationships can be attributed to very low numbers of such DNA adducts. Effects of both exogenous and endogenous DNA adducts need to be factored into the interpretation of chemical exposures.  相似文献   

7.
An approach is described that enables the germ cell mutagenicity of chemicals to be assessed as part of an integrated assessment of genotoxic potential. It is recommended, first, that the genotoxicity of a chemical be defined by appropriate studies in vitro. This should involve use of the Salmonella mutation assay and an assay for the induction of chromosomal aberrations, but supplementary assays may be indicated in specific instances. If negative results are obtained from these 2 tests there is no need for the conduct of additional tests. Agents considered to be genotoxic in vitro should then be assessed for genotoxicity to rodents. This will usually involve the conduct of a bone marrow cytogenetic assay, and in the case of negative results, a genotoxicity test in an independent tissue. Agents found to be non-genotoxic in vivo are regarded as having no potential for germ cell mutagenicity. Agents found to be genotoxic in vivo may either be assumed to have potential as germ cell mutagens, or their status in this respect may be defined by appropriate germ cell mutagenicity studies. The basis of the approach, which is supported by the available experimental data, is that germ cell mutagens will be evident as somatic cell genotoxins in vivo, and that these will be detected as genotoxins in vitro given appropriate experimentation. The conduct of appropriate and adequate studies is suggested to be of more value than the conduct of a rigid set of prescribed tests.  相似文献   

8.
Alkyl adducts at the O6-position of guanine constitute promutagenic DNA lesions likely to be involved in the initiation of malignant transformation. They can be removed by a cellular acceptor protein termed O6-alkylguanine-DNA alkyltransferase (AT). In rat liver this repair enzyme can be induced by a variety of hepatotoxins, partial hepatectomy and X-irradiation. This paper describes a stimulation of the hepatic AT by treatment of rats with the radiomimetic agent, bleomycin. Induction of AT is dose-dependent up to 20 mg bleomycin/kg and appears to level off with higher doses. Enhancement of O6-meG repair is detectable within 24 h after a single i.p. injection. Maximum AT induction was reached after 6 days and amounted to 350% of the control levels. The enhancement of AT activity is not associated with acute liver injury and initially coincides with an inhibition of [3H]deoxythymidine incorporation into hepatic DNA. This indicates that AT induction in rat liver is not necessarily dependent on tissue necrosis with increased cell replication. Since bleomycin does not produce DNA lesions recognized and repaired by the AT, the hypothesis is entertained that AT induction by these agents is part of a concerted reaction to radiation-type DNA damage.  相似文献   

9.
The relative importance of different sites of alkylation on DNA was determined by comparing two ethylating agents. 1-Ethyl-1-nitrosourea (ENU) ethylates DNA with a higher proportion of total adducts on ring oxygens than ethyl methanesulfonate, which ethylates with a higher proportion of total adducts on the N-7 of guanine. Research with somatic cells in culture and prokaryotes strongly suggests that O6-guanine (O6-G) is the principal genotoxic site. To determine the importance in germ-line mutagenesis of the O6-G site relative to the N-7 of guanine, dose-response curves were constructed for both ENU and EMS, where dose was measured as total adducts per deoxynucleotide (APdN) and response as sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa. For both mutagens the dose response curve was linear and extrapolated to the origin. The dose-response curve for ENU was fit to an equation m = 6.2D, and the dose response curve for EMS, from this and previous experiments, was m = 3.2D where m = %SLRL and D = APdN X 10(-3). Therefore, ENU is 1.9 times more efficient per adduct in inducing SLRL mutations than EMS. In vitro studies showed that ENU induced 9.5% of its total adducts on O6-G while EMS induced 2.0% of its adducts on O6-G. If O6-G was the sole genotoxic site, then ENU should be 4.8 times more efficient per adduct than EMS. In contrast, if N-7 G was the sole genotoxic site, ENU would be only 0.19 as effective as EMS. It was concluded that while O6-G was the principal genotoxic site, N-7 G made a significant contribution to germ-line mutagenesis.  相似文献   

10.
Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also to tumor formation, as revealed by the response of MGMT transgenic and knockout mice. Overexpression of genes involved in base excision repair (N-methylpurine-DNA glycosylase, apurinic endonuclease, DNA polymerase β) is in most cases not beneficial in increasing the protection level, whereas their down-modulation or inactivation increases cellular sensitivity. This indicates that non-repaired base N-alkylation lesions and/or repair intermediates possess genotoxic potential. Modulation of mismatch repair and poly(ADP)ribosyl transferase has also been shown to affect the cellular response to alkylating agents. Furthermore, the role of Fos, Jun and p53 in cellular defense against alkylating mutagens is discussed.  相似文献   

11.
The biological significance of DNA adducts is under continuous discussion because analytical developments allow determination of adducts at ever lower levels. Central questions refer to the biological consequences of adducts and to the relationship between background DNA damage and exposure-related increments. These questions were addressed by measuring the two DNA adducts 7-methylguanine (7-mG) and O6-methyl-2′-deoxyguanosine (O6-mdGuo) by LC–MS/MS in parallel to two biological endpoints of genotoxicity (comet assay and in vitro micronucleus test), using large batches of L5178Y mouse lymphoma cells treated with methyl methanesulfonate (MMS). The background level of 7-mG was 1440 adducts per 109 nucleotides while O6-mdGuo was almost 50-fold lower (32 adducts per 109 nucleotides). In the comet assay and the micronucleus test, background was in the usual range seen with smaller batches of cells (2.1% Tail DNA and 12 micronuclei-containing cells per 1000 binucleated cells, respectively). For the comparison of the four endpoints for dose-related increments above background in the low-response region we assumed linearity at low dose and used the concept of the “doubling dose”, i.e., we estimated the concentration of MMS necessary to double the background measures. Doubling doses of 4.3 and 8.7 μM MMS were deduced for 7-mG and O6-mdGuo, respectively. For doubling the background measures in the comet assay and the micronucleus test, 5 to 15-fold higher concentrations of MMS were necessary (45 and 66 μM, respectively). This means that the contribution of an increase in DNA methylation to biological endpoints of genotoxicity is overestimated. For xenobiotics that generate adducts without background, the difference is even more pronounced because the dose–response curve starts at zero and the limit of detection of an increase is not affected by background variation. Consequences for the question of thresholds in dose–response relationships and for the setting of tolerable exposure levels are discussed.  相似文献   

12.
The food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) were studied for their genotoxic potential using hepatocytes isolated from untreated and Aroclor 1254 (PCB) pretreated rats as an activation system. Monolayers of hepatocytes co-incubated with Salmonella typhimurium TA98 activated IQ and MeIQ to bacterial mutagens, with MeIQ being about twice as potent as IQ. The mutagenic activities of IQ and MeIQ were increased by using hepatocytes from PCB-pretreated rats. IQ and MeIQ also caused primary DNA damage in the hepatocytes as determined by increases in the rate of alkaline elution of DNA, as well as increases in DNA-repair synthesis. Furthermore, exposure of V79 cells co-cultured with PCB-pretreated hepatocytes to IQ and MeIQ showed evidence of increased sister-chromatid exchanges and a low and variable increase in the number of 6-thioguanine-resistant mutants. The genotoxic potency of IQ and MeIQ in mammalian cells was low or virtually absent compared to their extreme potency in bacteria. This could be due to a lower capacity of mammalian cells to further metabolize the so-called directly acting bacterial mutagens, formed by a cytochrome P-450 dependent N-hydroxylation, to their ultimate reactive forms.  相似文献   

13.
Mutagenesis induced by bacterial UmuDC proteins and their plasmid homologues   总被引:19,自引:1,他引:18  
The popular image of a world full of pollutants mutating DNA is only partly true since there are relatively few agents which can subtly and directly change base coding; for example, some alkylating agents alter guanine so that it pairs like adenine. Many more mutagens are less subtle and simply destroy coding altogether rather than changing it. Such mutagens include ultraviolet light, X-rays, DNA cross-linkers and other agents which make DNA breaks or large adducts. In Escherichia coli, mutagenesis by these agents occurs during a DNA repair process which increases cell survival but with an inherent possibility of changing the original sequence. Such mutagenic DNA repair is, in part, encoded by the E. coli umuDC operon. This article reviews the structure, function, regulation and evolution of the umuDC operon and similar genes found both in other species and on naturally occurring plasmids.  相似文献   

14.
This article reviews the application of sensitive biotechniques in the detection of DNA damage within the aquatic environment as "early warning" indicators of pollution-related genetic toxicity. Bacterial mutagenicity assays have played an important role both in the discovery of mutagens and in the analysis of the ability of aquatic organisms to convert inert substances to reactive genotoxic products. Genetic damage in aquatic species treated with carcinogens has been detected by analysis of DNA adducts, induction of DNA repair, DNA strand breakage and formation of chromosomal aberrations and sister chromatid exchanges. Little information is available on pollution-related DNA damage resulting from field exposure. A 32P-postlabelling technique for the sensitive detection of DNA adducts is a promising development towards this aim and the analysis of changes in oncogene nucleotide sequence in tumour tissue is considered an important future direction.  相似文献   

15.
This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. 137Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methane sulfonate, ethyl methane sulfonate, ethyl nitrosurea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency.This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.Abbreviations DBCP dibromochlorpropane - DSB(s) DNA double-strand break(s) - EDB ethylene dibromide - EMS ethyl methane sulfonate - ENU ethyl nitrosurea - MC mitomycin C - MMS methyl methane sulfonate - SDS sodium dodecyl sulfate - SSB (s) DNA single-strand break(s) - TEM triethylene melamine - UDS unscheduled DNA synthesis  相似文献   

16.
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Exposure of cells to chemical carcinogens and mutagens may result in the formation of DNA adducts, which can give rise to mutations in the genome and to cellular transformation. Methods to measure DNA-adduct formation may be useful for ‘biomonitoring’, to establish exposure of laboratory animals or humans to DNA-damaging agents. For such purposes, immunochemical methods appear to be suitable, because they allow sensitive detection and quantification of DNA adducts in small amounts of sample in a non-radiolabelled form. We have worked out optimal conditions for the detection of DNA adducts by means of competitive enzyme-linked immunosorbent assay (ELISA). This technique involves interaction of soluble antigen, immobilized antigen and antibody. It appeared that the sensitivity of the competitive assay can be improved by lowering the amount of immobilized antigen, adsorbed to the wall of the plastic reaction vessel. On the basis of these observations, suitable conditions were selected for a sensitive quantitative assay of adducts in DNA isolated from various organs of rats, treated (p.o.) with the liver carcinogen 2-acetylaminofluorene (2-AAF). Under the conditions of these experiments, the available rabbit antiserum recognizes the guanosine-AAF adduct with high specificity. A time- and dose-dependent induction of AAF adducts could be measured in liver DNA from exposed rats, whereas the amount of adducts in DNA from spleen and nucleated blood cells remained below the detection limit (1 adduct/108 nucleotides). The implications of these findings with respect to the relevance of blood cell biomonitoring for target cell exposure are discussed.  相似文献   

18.
Estimates of genotoxic effects of mutagens at low and protracted doses are often based on linear extrapolation of data obtained at relatively high doses. To test the validity of such an approach, a comparison was made between the mutagenicity of N-methyl-N-nitrosourea (MNU) in T-lymphocytes of the rat following two treatment protocols, i.e. sub-chronic exposure to a low dose (15–45 repeated exposures to 1 mg/kg of MNU) or acute exposure to a single high dose (15, 30 or 45 mg/kg of MNU). Mutation induction appeared dramatically lower following sub-chronic treatment compared to treatment with a single high exposure. Furthermore, DNA sequence analysis of the coding region of the hprt gene in MNU-induced mutants showed that acute high dose treatment causes mainly GC → AT base pair changes, whereas sub-chronic treatment results in a significant contribution of AT base pair changes to mutation induction. We hypothesize that O6-methylguanine-DNA methyltransferase is saturated after acute treatments, while after sub-chronic treatment most O6-methylguanine is efficiently repaired. These data suggest (i) that risk estimations at low and protracted doses of MNU on the basis of linear extrapolation of effects measured at high dose are too high and (ii) that the protective effects of DNA repair processes are relatively strong at low sub-chronic exposure.  相似文献   

19.
Alkylation damage, DNA repair and mutagenesis in human cells   总被引:5,自引:0,他引:5  
17 human cell lines that differ significantly in level of O6-alkylguanine-DNA alkyltransferase (AGT) activity were identified by comparing their sensitivity to the cytotoxic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and determining the level of AGT activity in cell extracts from the various lines by measuring the decrease in radiolabeled O6-methylguanine from DNA, using high-performance liquid chromatography. 9 lines exhibited high levels of AGT activity, 2 showed an intermediate level (25–50% of the mean of those with the higher levels), and 6 exhibited very low or virtually undetectable levels of AGT. Included were several lines that are very deficient in capacity for nucleotide excision repair. When representatives from the 3 categories of cell lines defined by the level of AGT activity were compared for sensitivity to the cytotoxic and mutagenic effect of MNNG, they showed an inverse correlation between the degree of cell killing and frequency of mutants induced and the level of AGT activity. The cells' capacity for nucleotide excision repair did not affect these results. Exposure of cells with a high level of AGT activity to O6-methylguanine in the medium reduced the AGT activity 60–80%. These pre-treated cells exhibited a significantly higher frequency of MNNG-induced mutants than did cells that were not pre-treated, suggesting that the O6-methylguanine lesion in DNA is responsible for a significant proportion of the mutations induced. Cell strains containing substrates for assaying intrachromosomal homologous recombination were constructed using parental cell lines from each of the 3 categories of AGT activity. These strains showed an inverse correlation between the level of AGT activity and the frequency of MNNG-induced recombination. When various cell lines representing the 3 categories of AGT activity were compared for sensitivity to ethylnitrosourea, the results were consistent with AGT and nucleotide excision repair playing a role in preventing cell killing and mutation induction by this agent.  相似文献   

20.
The polycyclic aromatic hydrocarbon (PAH) benzo[ghi]perylene (BghiP) lacks a "classic" bay-region and is therefore unable to form vicinal dihydrodiol epoxides thought to be responsible for the genotoxicity of carcinogenic PAHs like benzo[a]pyrene. The bacterial mutagenicity of BghiP increases considerably after inhibition of the microsomal epoxide hydrolase (mEH) indicating arene oxides as genotoxic metabolites. Two K-region epoxides of BghiP, 3,4-epoxy-3,4-dihydro-BghiP (3,4-oxide) and 3,4,11,12-bisepoxy-3,4,11,12-tetrahydro-BghiP (3,4,11,12-bisoxide) identified in microsomal incubations of BghiP are weak bacterial mutagens in strain TA98 of Salmonella typhimurium with 5.5 and 1.5 his+-revertant colonies/nmol, respectively. After microsomal activation of BghiP in the presence of calf thymus DNA three DNA adducts were detected using 32P-postlabeling. The total DNA binding of 2.1 fmol/microg DNA, representing 7 adducts in 10(7) nucleotides, was raised 3.6-fold when mEH was inhibited indicating arene oxides as DNA binding metabolites. Co-chromatography revealed the identity between the main adduct of metabolically activated BghiP and the main adduct of the 3,4-oxide. DNA adducts of BghiP originating from the 3,4,11,12-bisoxide were not found. Therefore, a K-region epoxide is proposed to be responsible for the genotoxicity of BghiP and possibly of other PAHs without a "classic" bay-region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号