首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green fluorescent protein (GFP) and other intrinsically fluorescent proteins (IFPs) are popular reporters because they allow visualization of cellular constituents in living specimens. IFP technology makes it possible to view dynamic processes in living cells, but extended observation, using fluorescence microscopy (both wide-field and confocal), can result in significant light energy exposure. Therefore, it is possible that cells experience light-induced damage that alters cell physiology and confounds observations. To understand the impact that extended viewing has on cells, we obtained quantitative information about the effect of light energy dose and observation conditions on tobacco BY-2 cell physiology. Our results show a non-linear relationship between the excitation light intensity and mitotic arrest, and the frequency of mitotic arrest is dependent on the presence of an IFP that absorbs the excitation light. Moreover, fluorescence microscopy induces the production of reactive oxygen species (ROS), as assayed using BY-2 cells loaded with oxidation-sensitive dyes, and the level of ROS production increases if the cells express an IFP that absorbs the excitation light energy. The dye oxidation follows sigmoidal kinetics and is reversible if the cells are exposed to low irradiation levels. In addition, the dye oxidation rate shows a non-linear relationship to the excitation light intensity, and a good correlation exists between photobleaching, mitotic arrest, and dye oxidation. The data highlight the importance of ROS scavenging for normal mitotic progression, and provide a reference for judiciously choosing conditions that avoid photobleaching that can lead to ROS accumulation and physiological damage.  相似文献   

2.
Experiments are presented showing that specific inhibition of mitochondrial protein synthesis by tetracyclines decreases the activity of the NADH-dehydrogenase complex in liver mitochondria, if rats are treated for long periods with these antibiotics. The corresponding inhibition of this complex in tumor cells (Zajdela hepatoma) and tumor mitochondria (Leydig cell tumor) is even more pronounced. It is concluded that the mitochondrial genetic system is involved in the assembly of the NADH-dehydrogenase complex, most likely by coding for one or more subunits. It is argued that this information, contrary to the situation for cytochrome c oxidase, the cytochrome bc1 complex and ATPsynthase, has been missed in previous experiments employing differential inhibition of mitochondrial protein synthesis, because of the circumstance that the inhibition did not reach the level at which it became rate-limiting.  相似文献   

3.
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Modification with Alexa594 allowed the monitoring of fluorescence changes at a red excitation light wavelength of 605 nm, thus avoiding significant rhodopsin bleaching. Upon absorption of a photon by rhodopsin, the fluorescence intensity increased as much as 20% at acidic pH with an apparent pK(a) of approximately 6.8 at 4 degrees C, and was sensitive to the presence of hydroxylamine. These findings indicated that the increase in fluorescence is specific for metarhodopsin II. In the presence of transducin, a significant increase in fluorescence was observed. This increase of fluorescence emission intensity was reduced by addition of GTP, in agreement with the fact that transducin enhances the formation of metarhodopsin II. Under conditions that favored the formation of a metarhodopsin II-Alexa594 complex, transducin slightly decreased the fluorescence. In the presence of arrestin, under conditions that favored the formation of metarhodopsin I or II, a phosphorylated, photolyzed rhodopsin-Alexa594 complex only slightly decreased the fluorescence intensity, suggesting that the cytoplasmic surface structure of metarhodopsin II is different in the complex with arrestin and transducin. These results demonstrate the application of Alexa594-modified rhodopsin (Alexa594-rhodopsin) to continuously monitor the conformational changes in rhodopsin during light-induced transformations and its interactions with other proteins.  相似文献   

4.
It is a common experience that, with exposure to exciting radiation of the fluorescence microscope, the acridine orange-induced red fluorescence of the nucleus, produced by Feulgen hydrolysis, fades with a concomitant shift to green. The present investigation reports a phenomenon of photoenhancement observed in the hydrolyzed cytoplasm where pale green fluorescence increases in intensity with exposure to exciting radiation. The phenomenon has been noticed in Rhizobium, Oscillatoria, tomato root tip cells and human buccal epithelial cells. It is tentatively concluded that the gain in fluorescence yield is due to certain conformational changes of the acridine orange-protein complex induced by ultraviolet light flux.  相似文献   

5.
Blue (F 450) and green (F 530) leaf fluorescence were studied together with the red chlorophyll fluorescence (emission maxima F 690 and F 735) during light-induced chlorophyll fluorescence induction kinetics (Kautsky effect) in predarkened leaves of wheat (Triticum aestivum L.) and soybean (Glycine max L.). The intensity of the red chlorophyll fluorescence decreased from maximum fluorescence Fm to steady-state fluorescence Fs, and the fluorescence ratio F 690/F 735 decreased by about 10% from Fm to Fs. However, blue and green fluorescence intensities remained constant throughout the measuring time. Consequently, the ratio of blue to red fluorescence (F 450/F 690) increased during chlorophyll fluorescence induction kinetics, whereas the ratio of blue to green fluorescence (F 450/F 530) remained unchanged within the same period. The knowledge of these ratios will be a prerequisite for the interpretation of remote sensing data from terrestrial vegetation.  相似文献   

6.
Although the green-red fluorescence of AO is an accepted measure of DNA-RNA content, respectively, it is actually a measure of the fluorescence of dye bound to nucleic acids, and may vary with changes in accessibility to the dye. It has been shown for example that extraction of nuclear proteins results in a marked increase in DNA stainability. Moreover, in certain cell systems the binding of fluorochromes correlates with structural modifications in chromatin that accompany cell differentiation. We report here that changes in green & red fluorescence intensity also occur in long-term monocyte cultures. The increased red fluorescence intensity observed in cultured monocytes may reflect ribosomal RNA synthesis and the increased green fluorescence enhanced AO accessibility to DNA due to changes in chromatin organization. We compared cultured monocytes from bladder cancer patients and healthy donors. The results indicate a small but statistically significantly greater increase in mean green & red fluorescence of cultured monocytes from the cancer patients. These fluorescence variations may indicate differences in the immunologic status of cancer patients and/or be related to disease state.  相似文献   

7.
The dye H2DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H2O2, was used to study light-induced H2O2 production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H2O2 production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H2O2 export from chloroplasts to cytoplasm in photosynthesizing cells in the light; the increase in this export falls in the same time interval as does the cessation of cytoplasmic movement.  相似文献   

8.
9.
Incubation of Chlamydomonas reinhardtii cells under nutrient deficiency results in the faster initial rise in the light-induced chlorophyll fluorescence kinetic curve. We showed that short-term anaerobic incubation of algal cells altered initial fluorescence in a way similar to nutrient starvation, suggesting an important role of the plastoquinones redox state in the observed effect. Bi-component analysis of highly resolved initial fluorescence rise kinetics in sulfur- or oxygen-depleted C. reinhardtii cells suggested that one of the mechanisms underlying the observed phenomenon involves primary closure (photochemical inactivation via Qa reduction) of β-type PSII as compared to α-PSII. Moreover, results of modeling of the fluorescence curve brought us to the conclusion that accumulation of closed centers in α-PSII supercomplexes may also cause a faster initial fluorescence rise. The observed correlations between nutrient supply rate and initial fluorescence rise pattern in green algae can serve to characterize culture nutritional status in vivo.  相似文献   

10.
目的建立稳定表达绿色荧光蛋白的人宫颈癌细胞系,建立移植瘤模型并比较移植模型肿瘤生长的荧光分析和卡尺测量的优缺点。方法以Lipofectamine 2000介导chickenβ-actin-GFP-NEO转染人宫颈癌细胞Hela,经梯度浓度G418筛选获得稳定表达绿色荧光蛋白的细胞克隆并扩大培养。BALB/cA-nu裸鼠皮下接种1×10^6个发光细胞使其成瘤,利用活体荧光成像系统和游标卡尺观察肿瘤的生长情况。结果获得了稳定表达GFP的人宫颈癌细胞株,将其接种到裸鼠体内可成瘤。活体荧光成像观察发现,1至3周随着肿瘤体积逐渐增大,平均荧光光子数逐渐增加;4周时随着肿瘤出现明显坏死,平均荧光光子数呈现下降趋势,而游标卡尺测量结果显示肿瘤在4至5周仍然不断的增大。结论绿色荧光蛋白能够在人宫颈癌细胞Hela中长期稳定表达,用绿色荧光蛋白标记的人宫颈癌细胞Hela建立的裸鼠肿瘤模型可以为人宫颈癌研究提供理想的实验材料,应用小动物活体成像系统能够客观定量评价活的肿瘤细胞在动物体内的生长情况,而不是肿瘤体积的变化。  相似文献   

11.
Synopsis It is known that hydrocortisone causes a great increase in the number of small intensely fluorescent (SIF) cells in the sympathetic ganglia when injected into newborn rats. The effect of hydrocortisone on nervous tissuein vitro has not been studied previously.Pieces of newborn rat sympathetic ganglia were cultivated in Rose chambers. Hydrocortisone was dissolved in the medium in concentrations of 1–9 mg/l. Both control and hydrocortisone-containing cultures were examined daily by phase-contrast microscopy, and the catecholamines were demonstrated histochemically by formaldehyde-induced fluorescence after 7 days in culture.All cultures showed outgrowths of axons and supporting cells elements, although these were less extensive in the groups of cultures with hydrocortisone. After a week, SIF cells with a green fluorescence were observed in the control explants. In all cultures with hydrocortisone, a concentration-dependent increase was observed in the fluorescence intensity and the number of the SIF cells in the explant; numerous SIF cells were also seen in the outgrowth. Some SIF cells showed processes and the longest processes were seen in cultures with the highest concentration of hydrocortisone.It is concluded that hydrocortisone causes an increased synthesis of catecholamines in the SIF cellsin vitro, and an increase in their number by affecting either their division or their differentiation from a more immature form, or both. This effect was a direct one and not mediated by any system other than the ganglion itself. Induction of enzyme synthesis by hydrocortisone is proposed as an explanation of the increase in catecholamine concentration.University of Melbourne Senior Research Fellow, September 1971-August 1972Sunshine Foundation and Rowden White Trust Overseas Research Fellow in the University on Melbourne, September 1971-August 1972  相似文献   

12.
2-p-Toluidino-naphthalene-6-sulfonate is a sensitive fluorescent reporter group which can be used for the detection of the conformation of fructose 1,6-diphosphatase from spinach chloroplasts. When fructose 1,6-diphosphatase was added to a dilute solution of 2-p-toluidino-naphthalene-6-sulfonate at pH 9.0, the fluorescence intensity gradually increased. At this pH, the enzyme activity decreased at the same rate. However, at neutral pH (7.5), this time-dependent fluorescence change was not observed. In the presence of Mg2+, which is an activator of the enzyme, the fluorescence intensity was increased instantly and did not change for 30 min in the pH range 8.0--9.0. From the concentration dependence of the fluorescence intensity, the dissociation constant for Mg2+ was determined, Kdis = 3 mM. The effects of pH and Mg2+ on the conformation and activity of chloroplast fructose 1,6-diphosphatase are discussed.  相似文献   

13.
酵母表面展示分选酶底物用于分选酶活性检测   总被引:3,自引:0,他引:3  
罗立新  吴琳  林影 《微生物学报》2009,49(11):1534-1539
摘要:【目的】以EGFP标签检测分选酶底物QALPETGEE在毕赤酵母表面的表达,然后将酵母表面展示的底物与分选酶相互作用以检测分选酶活性。【方法】以pcDNA-myc-his-EGFP为模板,通过PCR技术将QALPETGEE-linker-EGFP基因连接到穿梭载体pKFS上,构建QALPETGEE-linker-EGFP酵母表面展示载体后转化至毕赤酵母(Pichia pastoris)GS115中。重组菌经培养,利用荧光显微镜检测重组酵母的荧光强度,然后通过荧光分光光度计检测分选酶与底物相互作用后产  相似文献   

14.
The intensity of the "steady-state" fluorescence of "aerobic" Anacystis nidulans is variable under prolonged illumination with orange (590 mmu) or blue (440 mmu) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196 degrees C in light, the light-induced changes in the "steady-state" fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mmu) and a minor peak located at about 693 mmu.  相似文献   

15.
16.
Donna M. Nesbitt  Steven P. Berg   《BBA》1980,593(2):353-361
The light-induced hindrance of spin label motion increases linearly with light intensity. However, it has not been possible to unambiguously demonstrate light saturation due to the very high rates of spin label reduction at high light intensity. The light-induced hindrance of spin label motion may be mimicked in the dark by subjecting thylakoids to appropriately low pH regimes. Uncouplers such as gramicidin-D and methylamine reduce the light-induced hindrance to dark levels as does ethylenedinitrilotetraacetate (EDTA) treatment. Valinomycin plus KCl which destroys the electric potential is only partially effective in reducing the light-induced hindrance. These results indicate that protons in the aqueous lumen of the thylakoids are closely involved with the observed light-induced hindrance of spin label motion.  相似文献   

17.
Fluorescent semiconductor quantum dots (QDs) are newfound nanocrystal probes which have been used in bioimaging filed in recent years. The purpose of this study is to evaluate the diagnostic value of specific QDs coupled to rituximab monoclonal antibody against CD20 tumor markers for patients with diffuse large B-cell lymphoma (DLBCL). In current study rituximab-conjugated quantum dots (QDs-rituximab) were prepared against CD20 tumor markers for detection of CD20-positive cells (human Raji cell line) using flowcytometry. A total of 27 tumor tissue samples were collected from patients with DLBCL and 27 subjects with negative pathological tests as healthy ones, which stained by QD-rituximab. The detection signals were obtained from QDs using fluorescence microscopy. The flowcytometry results demonstrated a remarkable difference in fluorescent intensity and FL2-H + (CD20-positive cells percentage) between two groups. Both factors were significantly higher in Raji in comparison with K562 cell line (P < 0.05). Lot of green fluorescence signals was observed due to the selectively binding of QD-rituximab to CD20 tumor markers which overexpressed in tumor tissues and a few signals observed on the defined healthy ones. Based on these observations the cut-off point was 46.8 dots and the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 89.5%, 91.3%, and 100%, respectively (LR+, 9.52; LR−, 0). The QD - rituximab could be beneficial as a bioimaging tool with high sensitivity to provide an accurate molecular imaging technique for identifying CD20 tumor markers for early diagnosis of the patients with DLBCL.  相似文献   

18.
Tracheal antimicrobial peptides (TAP) are expressed primarily in respiratory epithelial cells of cattle. The TAP expression is inducible upon challenge with bacteria and bacterial lipopolysaccharide (LPS). In pigs, a promoter that can be activated by bacterial infection has yet to be identified. The objective of this study was to use green fluorescent protein (GFP) as a reporter gene to determine the function and inducibility of the bovine TAP promoter in porcine primary tracheal epithelial cells. Thus, evaluating the feasibility of using this promoter to direct transgene expression in porcine cells.The percentage of GFP expressing cells increased in response to LPS challenge in both a dose-dependent and time-dependent manner (p < 0.05). Moreover, when the intensity of the GFP fluorescence was measured, it was observed that the percentage of cells that have a high intensity of GFP fluorescence, also increased gradually as LPS dose increased, the difference between the unchallenged (control) and challenged group become statistically significant at the concentration of 100 ng/mL after 36 h LPS challenge (p < 0.05). The level of induced-expression driven by the TAP promoter was 67.8 +/-12.2% that of the cytomegalovirus (CMV) promoter. The intensity of GFP fluorescence by the TAP promoter was 39.8 +/- 7.6% when compared to the expression driven by the CMV promoter. These data suggest the TAP promoter functions at a lower, but comparable, level to the strong CMV promoter.Our data demonstrated that the bovine TAP promoter was functional in porcine primary tracheal epithelial cells. The ability of the TAP promoter to control gene expression in an inducible manner in the porcine respiratory tract presents an important application potential in transgenic animal studies.  相似文献   

19.
In situ detection of certain specific enzyme activities in cells is deeply attached to tumor diagnosis. Conventional enzyme-responsive fluorescent probes have difficulty detecting targeted enzymes in situ in cells due to the low detection accuracy caused by the spread of fluorescence probes. In order to solve this problem, we have designed and synthesized an enzyme-responsive, water-soluble fluorescent probe with AIE characteristics, which could aggregate and precipitate to produce in situ fluorescence when reacting with the targeted enzyme in cells. The AIE fluorophore (TPEQH) was utilized to design the enzyme-responsive, fluorescent probe (TPEQHA) by introducing a phosphate group on to it, which could be specifically decomposed by the targeted enzyme, namely alkaline phosphatase (ALP). In tumor cells, TPEQH was highly produced due to the interaction of phosphate on the TPEQHA and the overexpressed ALP. Water-insoluble TPEQH then precipitated and release fluorescence in situ, thereby successfully detecting the ALP. Furthermore, the expression level of ALP could be determined by the fluorescence intensity of TPEQH with higher accuracy due to the inhibition of TPEQH leak, which demonstrated a potential application of in suit ALP detection in both clinical diagnosis and scientific research of tumor.  相似文献   

20.
Jeon BW  Hwang JU  Hwang Y  Song WY  Fu Y  Gu Y  Bao F  Cho D  Kwak JM  Yang Z  Lee Y 《The Plant cell》2008,20(1):75-87
ROP small G proteins function as molecular switches in diverse signaling processes. Here, we investigated signals that activate ROP2 in guard cells. In guard cells of Vicia faba expressing Arabidopsis thaliana constitutively active (CA) ROP2 fused to red fluorescent protein (RFP-CA-ROP2), fluorescence localized exclusively at the plasma membrane, whereas a dominant negative version of RFP-ROP2 (DN-ROP2) localized in the cytoplasm. In guard cells expressing green fluorescent protein-ROP2, the relative fluorescence intensity at the plasma membrane increased upon illumination, suggesting that light activates ROP2. Unlike previously reported light-activated factors, light-activated ROP2 inhibits rather than accelerates light-induced stomatal opening; stomata bordered by guard cells transformed with CA-rop2 opened less than controls upon light irradiation. When introduced into guard cells together with CA-ROP2, At RhoGDI1, which encodes a guanine nucleotide dissociation inhibitor, inhibited plasma membrane localization of CA-ROP2 and abolished the inhibitory effect of CA-ROP2 on light-induced stomatal opening, supporting the negative effect of active ROP2 on stomatal opening. Mutant rop2 Arabidopsis guard cells showed phenotypes similar to those of transformed V. faba guard cells; CA-rop2 stomata opened more slowly and to a lesser extent, and DN-rop2 stomata opened faster than wild-type stomata in response to light. Moreover, in rop2 knockout plants, stomata opened faster and to a greater extent than wild-type stomata in response to light. Thus, ROP2 is a light-activated negative factor that attenuates the extent of light-induced changes in stomatal aperture. The inhibition of light-induced stomatal opening by light-activated ROP2 suggests the existence of feedback regulatory mechanisms through which stomatal apertures may be finely controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号