首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Kinetoplast DNA of Bodo caudatus: a noncatenated structure.   总被引:6,自引:1,他引:5       下载免费PDF全文
The kinetoplast DNA (kDNA) of trypanosomes and other parasitic members of the order Kinetoplastida is organized as a complex network containing thousands of catenated circular DNA molecules. We found that the kDNA of a free-living kinetoplastida, Bodo caudatus, exists as a noncatenated structure. The kDNA of B. caudatus represents about 40% of the total cellular DNA, and the major components of this DNA are large circles of 10 and 12 kilobases (kb). Our results indicate that these circles are analogous to trypanosome kDNA minicircles despite their large size and noncatenated form. The kDNA of B. caudatus also contains a minor component of 19 kb which is transcribed. The 19-kb molecules are probably analogous to the maxicircles of trypanosomes. The properties of the B. caudatus kDNA suggest that the catenated network structure of trypanosome kDNA is not required for maxicircle segregation during kinetoplast division or for the expression of the maxicircle genome.  相似文献   

2.
The kinetoplast DNA (kDNA) minicircle molecules of 14 Brazilian stocks of Trypanosoma evansi were studied by morphological approaches (Giemsa and 4'-6'-diamidino-2-phenylindole staining and transmission electron microscopy) and molecular approaches (probing with an oligonucleotide complementary to the minicircle origin of replication and polymerase chain reaction amplification of a minicircle sequence). All methods indicated the absence of both a typical kinetoplast and kDNA minicircles, even in a very small number of parasites of a single stock or in small numbers of copies of molecules per cell. We did not detect any altered kDNA molecules. There were no kDNA molecules in either old or new stocks of T. evansi maintained by successive passages in mice. Similarly, no kDNA minicircles were detected in trypanosomes in blood smears from naturally infected domestic and wild animals. Thus, the total absence of kDNA in Brazilian stocks of T. evansi from both domestic and wild mammals is probably the natural state of Brazilian T. evansi.  相似文献   

3.
A simple, inexpensive procedure for preparing pure kinetoplast DNA network from Leishmania donovani is described. L. donovani promastigotes were lysed by incubating with pronase in presence of sodium dodecylsulfate. Crude kinetoplast DNA networks were obtained by centrifugation of the lysate through a 20% sucrose solution. The pellet containing kinetoplast DNA was deproteinized by phenol extraction. Contaminating nuclear DNAs were removed by denaturation with alkali, neutralization, and addition of polyethylene glycol-8000 to a concentration of 10% to facilitate precipitation of kinetoplast DNA. kDNA isolated after centrifugation was deproteinized several times with phenol and finally precipitated with ethanol. The average yield by this procedure is 30-50 micrograms of kDNA per gram of wet cells. By slot-blot hybridization with a nuclear DNA probe, no nuclear DNA contamination of the kDNA networks could be detected.  相似文献   

4.

Background  

The kinetoplast DNA (kDNA) of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs) are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms) the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating) present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes.  相似文献   

5.
Organized packaging of kinetoplast DNA networks   总被引:5,自引:0,他引:5  
L E Silver  A F Torri  S L Hajduk 《Cell》1986,47(4):537-543
The kinetoplast DNA (kDNA) of Trypanosoma equiperdum is organized as a complex structure of catenated circular DNA molecules. The major component of the kDNA network is the one kilobase minicircle that is present at about 10,000 copies per network. We have developed two assays to examine the structure of kDNA networks compacted in vitro with spermidine. Our results suggest that minicircles are arranged into a regular structure with an exposed domain which is DNAase I- and restriction-sensitive and a protected domain which is resistant to restriction endonucleases and DNAase I. This regularly packaged structure is dependent upon spermidine compaction and the circularity of the kDNA, but does not require supercoiled minicircles or catenated networks.  相似文献   

6.
The kinetoplast is a concatenated network of circular DNA molecules found in the mitochondrion of many trypanosomes. This mass of DNA is replicated in a discrete "S" phase in the cell cycle. We have tracked the incorporation of the thymidine analogue 5-bromodeoxyuridine into newly replicated DNA by immunofluorescence and novel immunogold labeling procedures. This has allowed the detection of particular sites of replicated DNA in the replicating and segregating kinetoplast. These studies provide a new method for observing kinetoplast DNA (kDNA) replication patterns at high resolution. The techniques reveal that initially the pattern of replicated DNA is antipodal and can be detected both on isolated complexes and in replicating kDNA in vivo. In Trypanosoma brucei the opposing edges of replicating kDNA never extend around the complete circumference of the network, as seen in other kinetoplastids. Furthermore, crescent-shaped labeling patterns are formed which give way to labeling of most of the replicating kDNA except the characteristic midzone. The configuration of these sites of replicated DNA molecules is different to previous studies on organisms such as Crithidia fasciculata, suggesting differences in the timing of replication of mini and maxicircles and/or organization of the replicative apparatus in the kinetoplast of the African trypanosome.  相似文献   

7.
Like other eukaryotes, trypanosomes have an essential type II fatty acid synthase in their mitochondrion. We have investigated the function of this synthase in bloodstream-form parasites by studying the effect of a conditional knockout of acyl carrier protein (ACP), a key player in this fatty acid synthase pathway. We found that ACP depletion not only caused small changes in cellular phospholipids but also, surprisingly, caused changes in the kinetoplast. This structure, which contains the mitochondrial genome in the form of a giant network of several thousand interlocked DNA rings (kinetoplast DNA [kDNA]), became larger in some cells and smaller or absent in others. We observed the same pattern in isolated networks viewed by either fluorescence or electron microscopy. We found that the changes in kDNA size were not due to the disruption of replication but, instead, to a defect in segregation. kDNA segregation is mediated by the tripartite attachment complex (TAC), and we hypothesize that one of the TAC components, a differentiated region of the mitochondrial double membrane, has an altered phospholipid composition when ACP is depleted. We further speculate that this compositional change affects TAC function, and thus kDNA segregation.  相似文献   

8.
The major component of kinetoplast DNA (kDNA) in the protozoan Crithidia acanthocephali is an association of approximately 27,000, 0.8 micrometers (1.58 x 10(6) dalton) circular molecules apparently held together in a particular structural configuration by topological interlocking. We have carried out hybridization experiments between kDNA samples containing one or the other of the two complementary (H and L) strands of purified 0.8 micrometers molecules derived from mechanically disrupted associations and RNA samples prepared either from whole C. acanthocephali cells or from a mitochondrion-enriched fraction. The results of experiments involving cesium sulfate buoyant density centrifugation indicate that whole cell RNA contains a component(s) complementary to all kDNA H strands, but none complementary to kDNA L strands. Similar results were obtained using mitochondrion-associated RNA. Digestion of RNA/DNA hybrids and suitable controls with the single-strand-specific nuclease S1 indicated that 10% of the kDNA H strand is involved in hybrid formation. Visualization of RNA/DNA hybrids stained with bacteriophage T4 gene 32 protein revealed that hybridation involves a single region of each kDNA H strand, equal to approximately 10% of the molecule length. These data suggest that at least 10% of the small circular component of kDNA of Crithidia acanthocephali is transcribed.  相似文献   

9.
10.
The protozoa Crithidia and Trypanosoma contain within a mitochondrion a mass of DNA known as kinetoplast DNA (kDNA) which consists mainly of an association of thousands of small circular molecules of similar size held together by topological interlocking. Using kDNA from Crithidia acanthocephali, Crithidia luciliae, and Trypanosoma lewisi, physicochemical studies have been carried out with intact associations and with fractions of covalently closed single circular molecules, and of open single circular and unit length linear molecules obtained from kDNA associations by sonication, sucrose sedimentation, and cesium chloride-ethidium bromide equilibrium centrifugation. Buoyant density analyses failed to provide evidence for base composition heterogeneity among kDNA molecules within a species. The complementary nucleotide strands of kDNA molecules of all three species had distinct buoyant densities in both alkaline and neutral cesium chloride. For C. acanthocephali kDNA, these buoyant density differences were shown to be a reflection of differences in base composition between the complementary nucleotide strands. The molar ratios of adenine: thymine:guanine:cytosine, obtained from deoxyribonucleotide analyses were 16.8:41.0:28.1:14.1 for the heavy strand and 41.6:16.6:12.8:29.0 for the light strand. Covalently closed single circular molecules of C. acanthocephali (as well as intact kDNA associations of C. acanthocephali and T. lewisi) formed a single band in alkaline cesium chloride gradients, indicating their component nucleotide strands to be alkaline insensitive. Data from buoyant density, base composition, and thermal melting analyses suggested that minor bases are either rare or absent in Crithidia kDNA. The kinetics of renaturation of 32P labeled C. acanthocephali kDNA measured using hydroxyapatite chromatography were consistent with at least 70% of the circular molecules of this DNA having the same nucleotide sequence. Evidence for sequence homologies among the kDNAs of all three species was obtained from buoyant density analyses of DNA in annealed mixtures containing one component kDNA strand from each of two species.  相似文献   

11.
The unusual structure of the kinetoplast DNA (kDNA) of trypanosomatids requires unique replication mechanisms. Deciphering the mechanisms that regulate the network assembly has been a challenge for many years. A better understanding of these processes was facilitated by recent studies on the fine structure of resting and replicating kDNA networks. In this review, Joseph Shlomai discusses our current view of the structural and mechanistic aspects of the assembly of kinetoplast DNA.  相似文献   

12.
The structure of the kinetoplast DNA of Trypanosoma equiperdum has been studied and compared to the structure of the circular mitochondrial DNA extracted from a dyskinetoplastic strain of T. equiperdum. In T. equiperdum wild type, the kinetoplast DNA constitutes approximately 6% of the total cellular DNA and is composed of approximately 3,000 supercoiled minicircles of 6.4 x 10(5) daltons and approximately 50 circular supercoiled molecules of 15.4 x 10(6) daltons topologically interlocked; The buoyant density in CsCl of the minicircles is 1.691 g/cm 3. The large circles have a buoyant density of 1.684 g/cm 3, are homogeneous in size and are selectively cleaved by several restriction endonucleases which do not cleave the minicircles. The cleavage sites of six different restriction endonucleases have been mapped on the large circle. The minicircles are cleaved by two other restriction endonucleases, and their cleavage sites have been mapped. The mitochondrial DNA extracted from the dyskinetoplastic strain of T. equiperdum represents 7% of the total DNA of the cell and is composed of supercoiled circles, heterogeneous in size, and topologically associated in catenated oligomers. Its buoyant density in CsCl is 1.688 g/cm 3. These molecules are not cleaved by any of the eight restriction endonucleases tested. The reassociation kinetics of in vitro labeled kDNA minicircles and large circles has been studied. The results indicate that the minicircles as well as the large circles are homogeneous in sequence and that the circular DNA of the dyskinetoplastic strain has no sequence in common with the kDNA of the wild strain.  相似文献   

13.
The endosymbiont-bearing trypanosomatids present a typical kDNA arrangement, which is not well characterized. In the majority of trypanosomatids, the kinetoplast forms a bar-like structure containing tightly packed kDNA fibers. On the contrary, in trypanosomatids that harbor an endosymbiotic bacterium, the kDNA fibers are disposed in a looser arrangement that fills the kinetoplast matrix. In order to shed light on the kinetoplast structural organization in these protozoa, we used cytochemical and immunocytological approaches. Our results showed that in endosymbiont-containing species, DNA and basic proteins are distributed not only in the kDNA network, but also in the kinetoflagellar zone (KFZ), which corresponds to the region between the kDNA and the inner mitochondrial membrane nearest the flagellum. The presence of DNA in the KFZ is in accordance with the actual model of kDNA replication, whereas the detection of basic proteins in this region may be related to the basic character of the intramitochondrial filaments found in this area, which are part of the complex that connects the kDNA to the basal body. The kinetoplast structural organization of Bodo sp. was also analyzed, since this protozoan lacks the highly ordered kDNA-packaging characteristic of trypanosomatid and represents an evolutionary ancestral of the Trypanosomatidae family.  相似文献   

14.
Cesium chloride centrifugation of DNA extracted from cells of blood strain Trypanosoma lewisi revealed a main band, ρ = 1.707, a light satellite, ρ = 1.699, and a heavy satellite, ρ = 1.721. Culture strain T. lewisi DNA comprised only a main band, ρ = 1.711, and a light satellite, ρ = 1.699. DNA isolated from DNase-treated kinetoplast fractions of both the blood and culture strains consisted of only the light satellite DNA. Electron microscope examination of rotary shadowed preparations of lysates revealed that DNA from kinetoplast fractions was mainly in the form of single 0.4 µ circular molecules and large masses of 0.4 µ interlocked circles with which longer, often noncircular molecules were associated. The 0.4 µ circular molecules were mainly in the covalently closed form: they showed a high degree of resistance to thermal denaturation which was lost following sonication; and they banded at a greater density than linear DNA in cesium chloride-ethidium bromide gradients. Interpretation of the large masses of DNA as comprising interlocked covalently closed 0.4 µ circles was supported by the findings that they banded with single circular molecules in cesium chloride-ethidium bromide gradients, and following breakage of some circles by mild sonication, they disappeared and were replaced by molecules made up of low numbers of apparently interlocked 0.4 µ circles. When culture strain cells were grown in the presence of either ethidium bromide or acriflavin, there was a loss of stainable kinetoplast DNA in cytological preparations. There was a parallel loss of light satellite and of circular molecules from DNA extracted from these cells.  相似文献   

15.
We have used restriction endonucleases PstI, EcoRI, HapII, HhaI, and S1 nuclease to demonstrate the presence of a large complex component, the maxi-circle, in addition to the major mini-circle component in kinetoplast DNA (kDNA) networks of Trypanosoma brucei (East African Trypanosomiasis Research Organization [EATRO] 427). Endonuclease PstI and S1 nuclease cut the maxi-circle at a single site, allowing its isolation in a linear form with a mol wt of 12.2 x 10(6), determined by electron microscopy. The other enzymes give multiple maxi-circle fragments, whose added mol wt is 12-13 x 10(6), determined by gel electrophoresis. The maxi-circle in another T. brucei isolate (EATRO 1125) yields similar fragments but appears to contain a deletion of about 0.7 x 10(6) daltons. Electron microscopy of kDNA shows the presence of DNA considerably longer than the mini-circle contour length (0.3 micron) either in the network or as loops extending from the edge. This long DNA never exceeds the maxi-circle length (6.3 microns) and is completely removed by digestion with endonuclease PstI. 5-10% of the networks are doublets with up to 40 loops of DNA clustered between the two halves of the mini-circle network and probably represent a division stage of the kDNA. Digestion with PstI selectively removes these loops without markedly altering the mini-circle network. We conclude that the long DNA in both single and double networks represents maxi-circles and that long tandemly repeated oligomers of mini-circles are (virtually) absent. kDNA from Trypanosoma equiperdum, a trypanosome species incapable of synthesizing a fully functional mitochondrion, contains single and double networks of dimensions similar to those from T. brucei but without any DNA longer than mini-circle contour length. We conclude that the maxi-circle of trypanosomes is the genetic equivalent of the mitochondrial DNA (mtDNA) of other organisms.  相似文献   

16.
SYNOPSIS. Thin sections of the following stages of Trypanosoma avium were examined in the electron microscope: Trypomastigote forms from the blood of a bird, large epimastigote forms developing from the former after 2 hours in vitro, small epimastigote and metacyclic trypomastigote forms developing after longer periods of cultivation in vitro. The general structure of all stages was similar to that which is already well known for the genus, with the following points being of particular interest: (1) In the large trypomastigote and epimastigote forms, and possibly also in the smaller forms, the flagellar sheath was attached to the pellicle, at least in places. In the large trypomastigote forms, this resulted in the drawing out of a “fin” or ridge of cytoplasm, particularly in the mid-region of the body, to form a true undulating membrane. (2) At least some of the individuals in the blood of a bird have 2 basal bodies, one of which is aflagellate, altho these individuals rarely if ever divide. The large epimastigote forms into which they transform in vitro develop 4 basal bodies (2 flagellate and 2 aflagellate) before dividing. (3) The chondriome is well-developed in all stages, extending thruout the body, even to the tip of the elongated posterior end of the form in the avian host. (4) A short cytostome, leading from the flagellar pocket, was seen in the hematozoic (blood-inhabiting) trypomastigote form but not in other stages. (5) It is suggested that the forward movement of the kinetoplast and basal body during the transformation from trypomastigote to epimastigote form is mediated by localized cytoplasmic movement, resulting in the “rolling-up” of the organism's hind end. It is further suggested that protein synthesis is reduced or even suppressed entirely in the small epi- and trypomastigote forms appearing at the end of the developmental cycle in vitro or in the insect host, such synthesis recommencing rapidly after re-entry into the vertebrate.  相似文献   

17.
Flow cytometry and DNA binding-specific fluorescent reagents were used to compare the total DNA, G-C, and A-T content of the epimastigote and trypomastigote stages of Trypanosoma cruzi stocks. Significant total DNA differences of 2-12% between epimastigotes and trypomastigotes were found in three of six stocks studied. The epimastigote G-C content of five of six stocks was 4-8% higher than trypomastigotes, whereas the trypomastigote A-T content was 2.5-13% higher than the epimastigote A-T content. Although no obvious developmental stage association between total DNA and base composition was found, intrastage associations do exist. These observations were unaffected by nucleoprotein extraction implying that the observed differences between trypomastigotes and epimastigotes are not a consequence of nucleoprotein interference with DNA-binding fluorochromes. The nuclei and kinetoplasts of four T. cruzi stocks were isolated and analyzed. Developmental stage differences in nuclear and kinetoplast DNA are stock-dependent and base composition-dependent; both organelles contribute to the observed differences in DNA of intact cells. We found a nearly linear association between the percentage of total kinetoplast DNA, G-C, and A-T content. During metacyclogenesis, the G-C content decreases by approximately 7% as epimastigotes transform into metacyclic trypomastigotes. The decrease in G-C content precedes changes in morphology or in complement resistance. If the DNA changes are causally connected to developmental stage transformations in T. cruzi remains to be determined. However, our results could facilitate studies of the molecular genetic processes the parasite uses to successfully complete various phases of its life cycle and, consequently, the disease process it evokes.  相似文献   

18.
Certain minor minicircle sequence classes in the kinetoplast DNA (kDNA) networks of arsenite- or tunicamycin-resistant Leishmania mexicana amazonensis variants whose nuclear DNA is amplified appear to be preferentially selected to replicate (S. T. Lee, C. Tarn, and K. P. Chang, Mol. Biochem. Parasitol. 58:187-204, 1993). These sequences replace the predominant wild-type minicircle sequences to become dominant species in the kDNA network. The switch from wild-type-specific to variant-specific minicircles takes place rapidly within the same network, the period of minicircle dominance changes being defined as the transition period. To investigate the structural organization of the kDNA networks during this transition period, we analyzed kDNA from whole arsenite-resistant Leishmania parasites by dot hybridization with sequence-specific DNA probes and by electron-microscopic examination of isolated kDNA networks in vitro. Both analyses concluded that during the switch of dominance the predominant wild-type minicircle class was rapidly lost and that selective replication of variant-specific minicircles subsequently filled the network step by step. There was a time during the transition when few wild-type- or variant-specific minicircles were present, leaving the network almost empty and exposing a species of thick, long, fibrous DNA which seemed to form a skeleton for the network. Both minicircles and maxicircles were found to attach to these long DNA fibrils. The nature of the long DNA fibrils is not clear, but they may be important in providing a framework for the network structure and a support for the replication of minicircles and maxicircles.  相似文献   

19.
The trypanosome mitochondrial genome, kinetoplast DNA (kDNA), is a massive network of interlocked DNA rings, including several thousand minicircles and dozens of maxicircles. The unusual complexity of kDNA would indicate that numerous proteins must be involved in its condensation, replication, segregation and gene expression. During our investigation of trypanosome mitochondrial PIF1-like helicases, we found that TbPIF8 is the smallest and most divergent. It lacks some conserved helicase domains, thus implying that unlike other mitochondrial PIF1-like helicases, this protein may have no enzymatic activity. TbPIF8 is positioned on the distal face of kDNA disk and its localization patterns vary with different kDNA replication stages. Stem-loop RNAi of TbPIF8 arrests cell growth and causes defects in kDNA segregation. RNAi of TbPIF8 causes only limited kDNA shrinkage but the networks become disorganized. Electron microcopy of thin sections of TbPIF8-depleted cells shows heterogeneous electron densities in the kinetoplast disk. Although we do not yet know its exact function, we conclude that TbPIF8 is essential for cell viability and is important for maintenance of kDNA.  相似文献   

20.
Flow cytometry and DNA binding-specific fluorescent reagents were used to compare the total DNA, G-C, and A-T content of the epimastigote and trypomastigote stages of Trypanosoma cruzi stocks. Significant total DNA differences of 2–12% between epimastigotes and trypomastigotes were found in three of six stocks studied. The epimastigote G-C content of five of six stocks was 4–8% higher than trypomastigotes, whereas the trypomastigote A-T content was 2.5–13% higher than the epimastigote A-T content. Although no obvious developmental stage association between total DNA and base composition was found, intrastage associations do exist. These observations were unaffected by nucleoprotein extraction implying that the observed differences between trypomastigotes and epimastigotes are not a consequence of nucleoprotein interference with DNA-binding fluorochromes. The nuclei and kinetoplasts of four T. cruzi stocks were isolated and analyzed. Developmental stage differences in nuclear and kinetoplast DNA are stock-dependent and base composition-dependent; both organelles contribute to the observed differences in DNA of intact cells. We found a nearly linear association between the percentage of total kinetoplast DNA, G-C, and A-T content. During metacyclogenesis, the G-C content decreases by approximately 7% as epimastigotes transform into metacyclic trypomastigotes. The decrease in G-C content precedes changes in morphology or in complement resistance. If the DNA changes are causally connected to developmental stage transformations in T. cruzi remains to be determined. However, our results could facilitate studies of the molecular genetic processes the parasite uses to successfully complete various phases of its life cycle and, consequently, the disease process it evokes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号