首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We conducted a comparative study of the properties of topoisomerase I isolated from maize nuclei and mitochondria. We found that nuclear and mitochondrial enzymes possess different ability to bind single stranded DNA. Study of the enzyme activity dependence on Mg2+ demonstrated an absolute dependence of the mitochondrial topoisomerase activity. Contrary, nuclear enzyme activity was not absolutely dependent but stimulated by the magnesium cation. Mitochondrial topoisomerase formed covalent bond with the 5'-end of the cleaved DNA what is unique property of prokaryotic topoisomerase I. Nuclear enzyme bound covalently to the 3'-end like all eukaryotic topoisomerases I. The search through databases revealed genes which could encode mitochondrial topoisomerase I in the genomes of higher plants. Using both cDNA sequencing and in silico methods we demonstrated an existence of the ortholog gene in the maize genome. This gene shares significant homology with prokaryotic topoisomerase I genes that may explain differences in the properties of the mitochondrial and nuclear enzyme. Data obtained is of a significant interest both from the point of view of plant organelle evolution and mitochondrial genome expression mechanisms study.  相似文献   

3.
Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.  相似文献   

4.
5.
Topoisomerases are essential for orderly nucleic acid metabolism and cell survival and are proven targets for clinically useful antimicrobial and anticancer drugs. Interest in the topologically intricate mitochondrial DNA (kinetoplast or kDNA) of Trypanosoma brucei brucei and related kinetoplastid protozoan parasites has led to many reports of type II topoisomerases that participate in kDNA metabolism (we term the T. brucei brucei gene TbTOP2mt). We have now identified and characterized two new genes for type II topoisomerases in T. brucei brucei, termed TbTOP2alpha and TbTOP2beta. Phylogenetically, they share a common node with other nuclear topoisomerases, clearly distinct from a clade that includes the previously reported kinetoplastid genes, all of which are homologs of TbTOP2mt. Southern blot analysis reveals the new genes are single copy and positioned approximately 1.7 kb apart. Cognate mRNAs are expressed in African trypanosomes, but only a single message is detected in Leishmania or Crithidia. TbTOP2alpha encodes an ATP-dependent topoisomerase that appears as a single approximately 170-kDa band on immunoblots and localizes to the nucleus; RNA interference leads to pleomorphic nuclear (but not kDNA) abnormalities and early growth arrest. The role of TbTOP2beta is unclear. Although transcribed in trypanosomes, TbTOP2beta is not detected by beta-specific antiserum, and RNAi silencing results in no obvious phenotype. These studies indicate that African trypanosomes and related kinetoplastid human pathogens are unusual in having independent topoisomerase II genes to service their nuclear and mitochondrial genomes, and they highlight TbTOP2alpha as a promising target for the development of much-needed new therapies.  相似文献   

6.
A common feature shared by type I DNA topoisomerases is the presence of a "serine, lysine, X, X, tyrosine" motif as conventional enzyme active site. Preliminary data have shown that Leishmania donovani DNA topoisomerase I gene (LdTOP1A) lacked this conserved motif, giving rise to different theories about the reconstitution of an active DNA topoisomerase I in this parasite. We, herein, describe the molecular cloning of a new DNA topoisomerase I gene from L. donovani (LdTOP1B) containing the highly conserved serine, lysine, X, X, tyrosine motif. DNA topoisomerase I activity was detected only when both genes (LdTOP1A and LdTOP1B) were co-expressed in a yeast expression system, suggesting the existence of a dimeric DNA topoisomerase I in Leishmania parasites.  相似文献   

7.
DNA topoisomerases are ubiquitous enzymes that govern the topological interconversions of DNA thereby playing a key role in many aspects of nucleic acid metabolism. Recently determined crystal structures of topoisomerase fragments, representing nearly all the known subclasses, have been solved. The type IB enzymes are structurally distinct from other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. A putative topoisomerase I open reading frame from the kinetoplastid Leishmania donovani was reported which shared a substantial degree of homology with type IB topoisomerases but having a variable C-terminus. Here we present a molecular model of the above parasite gene product, using the human topoisomerase I crystal structure in complex with a 22 bp oligonucleotide as a template. Our studies indicate that the overall structure of the parasite protein is similar to the human enzyme; however, major differences occur in the C-terminal loop, which harbors a serine in place of the usual catalytic tyrosine. Most other structural themes common to type IB topoisomerases, including secondary structural folds, hinged clamps that open and close to bind DNA, nucleophilic attack on the scissile DNA strand and formation of a ternary complex with the topoisomerase I inhibitor camptothecin could be visualized in our homology model. The validity of serine acting as the nucleophile in the case of the parasite protein model was corroborated with our biochemical mapping of the active site with topoisomerase I enzyme purified from L.donovani promastigotes.  相似文献   

8.
Topoisomerases are enzymes that mediate topological changes in DNA that are essential for nucleic acid biosynthesis and for cell survival. The kinetoplastid protozoa, which include pathogenic trypanosomes and Leishmania, have yielded an interesting variety of purified topoisomerase activities as well as several topoisomerase genes. In these parasites, topoisomerases are involved in the metabolism of both nuclear and mitochondrial (kinetoplast) DNA. In this review, Christian Burri, Armette Bodley and Theresa Shapiro summarize what is known about topoisomerases in kinetoplastids, and consider the intriguing possibility that these enzymes may act as valuable antiparasite drug targets.  相似文献   

9.
10.
Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes dozens of proteins with imputed functions in nucleic acid transactions. Here we produced, purified, and characterized mimivirus DNA topoisomerase IB (TopIB), which we find to be a structural and functional homolog of poxvirus TopIB and the poxvirus-like topoisomerases discovered recently in bacteria. Arginine, histidine, and tyrosine side chains responsible for TopIB transesterification are conserved and essential in mimivirus TopIB. Moreover, mimivirus TopIB is capable of incising duplex DNA at the 5'-CCCTT cleavage site recognized by all poxvirus topoisomerases. Based on the available data, mimivirus TopIB appears functionally more akin to poxvirus TopIB than bacterial TopIB, despite its greater primary structure similarity to the bacterial TopIB group. We speculate that the ancestral bacterial/viral TopIB was disseminated by horizontal gene transfer within amoebae, which are permissive hosts for either intracellular growth or persistence of many present-day bacterial species that have a type IB topoisomerase.  相似文献   

11.
Chen S  Zhang Y  Hecht SM 《Biochemistry》2011,50(43):9340-9351
Vaccinia DNA topoisomerase IB is the smallest of the type IB topoisomerases. Because of its small size (314 amino acids) and target site specificity (5'(C/T)CCTTp(↓) sites), it constitutes an excellent model for studying the interaction of type IB enzymes with duplex DNA. In this study, p-thiophenylalanine was incorporated into the enzyme active site (position 274) by in vitro translation in the presence of a chemically misacylated tRNA. The modification, which resulted in replacement of the nucleophilic tyrosine OH group with SH, retained DNA topoisomerase activity and did not alter the DNA cleavage site. However, the modified topoisomerase effected relaxation of supercoiled plasmid DNA at a rate about 16-fold slower than the wild-type enzyme. The thiophenylalanine-induced DNA cleavage rate (k(cl) = 1 × 10(-4) s(-1)) was 30 times lower than for the wild-type enzyme (k(cl) = 3 × 10(-3) s(-1)). In contrast, thiophenylalanine-induced DNA religation was faster than that of the wild-type enzyme. We propose that the change in kinetics reflects the difference in bond energies between the O-P and S-P bonds being formed and broken in the reactions catalyzed by the wild-type and modified enzymes. We also studied the effect of adding Mg(2+) and Mn(2+) to the wild-type and modified topoisomerases I. Divalent metal ions such as Mg(2+) and Mn(2+) increased DNA relaxation activity of the wild-type and modified enzymes. However, the pattern of increases failed to support the possibility that metal ion-heteroatom interaction is required for catalysis.  相似文献   

12.
13.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

14.
The active site tyrosine residue of all monomeric type IB topoisomerases resides in the C-terminal domain of the enzyme. Leishmania donovani, possesses unusual heterodimeric type IB topoisomerase. The small subunit harbors the catalytic tyrosine within the SKXXY motif. To explore the functional relationship between the two subunits, we have replaced the small subunit of L.donovani topoisomerase I with a C-terminal fragment of human topoisomerase I (HTOP14). The purified LdTOP1L (large subunit of L.donovani topoisomerase I) and HTOP14 were able to reconstitute topoisomerase I activity when mixed in vitro. This unusual enzyme, ‘LeishMan’ topoisomerase I (Leish for Leishmania and Man for human) exhibits less efficiency in DNA binding and strand passage compared with LdTOP1L/S. Fusion of LdTOP1L with HTOP14 yielded a more efficient enzyme with greater affinity for DNA and faster strand passage ability. Both the chimeric enzymes are less sensitive to camptothecin than LdTOP1L/S. Restoration of topoisomerase I activity by LdTOP1L and HTOP14 suggests that the small subunit of L.donovani topoisomerase I is primarily required for supplying the catalytic tyrosine. Moreover, changes in the enzyme properties due to substitution of LdTOP1S with HTOP14 indicate that the small subunit contributes to subunit interaction and catalytic efficiency of the enzyme.  相似文献   

15.
16.
The integrase family of site-specific recombinases catalyzes conservative rearrangements between defined segments of DNA. A highly conserved tetrad (RHRY) of catalytic residues is essential for this process. This tetrad is dispersed in two motifs in the linear sequence, but is configured appropriately in the catalytic pocket to execute the strand cleavage and rejoining reactions. A third conserved motif has been identified in the Xer subgroup of the integrase family. Mutational analysis of 12 conserved residues in this motif in the XerD protein from Salmonella typhimurium led to the identification of an essential fifth catalytic residue (lysine 172) which is implicated in strand cleavage or exchange. This lysine residue occupies part of the turn of an antiparallel beta-hairpin which forms one side of the catalytic cleft in XerD, and is found at similar positions among evolutionarily diverse integrase family members. Related antiparallel beta-hairpins are present in eucaryotic type IB topoisomerase enzymes which also contain a critical lysine residue in the turn of the hairpin. In both the integrase family and eucaryotic type IB topoisomerases, the catalytic lysine residues are in close contact with the substrates and may play similar roles in influencing the reactivity of the phosphotyrosine intermediates formed during reactions catalyzed by both enzymes.  相似文献   

17.
We have developed microtiter assays for detecting catalysis by type IB topoisomerases and retroviral integrases. Each assay employs model DNA substrates containing biotin in one strand and digoxigenin in another. In each case action of the enzyme results in the formation of a single DNA strand containing both groups. This allows the reaction product to be quantified by capturing biotinylated product DNA on avidin-coated plates followed by detection using an anti-digoxigenin ELISA. The order of addition of reactants and inhibitors can be varied to distinguish effects of test compounds on different steps in the reaction. These assays were used to screen compound libraries for inhibitors active against mammalian topoisomerase or HIV integrase. We identified (–)-epigallocatechin 3-O-gallate, as a potent inhibitor of religation by mammalian topoisomerase (IC50 of 26 nM), potentially explaining the anti-cancer properties previously attributed to this compound. New integrase inhibitors were also identified. A similar strategy may be used to develop microtiter assays for many further DNA modifying enzymes.  相似文献   

18.
DNA topoisomerase was isolated for the first time from nucleoids of white mustard (Sinapis alba L.) chloroplasts. The enzyme had a molecular weight of 70 kDa; it was ATP-independent, required the presence of mono- (K+) and bivalent (Mg2+) cations, and was capable of relaxing both negatively and positively supercoiled DNA. These results suggest that the enzyme isolated belongs to type IB DNA topoisomerases.  相似文献   

19.
Type IB topoisomerases cleave and rejoin DNA strands through a stable covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. The stability of the intermediate is a two-edged sword; it preserves genome integrity during supercoil relaxation, but it also reinforces the toxicity of drugs and lesions that interfere with the DNA rejoining step. Here, we identify a key determinant of the stability of the complex by showing that introduction of an Sp or Rp methylphosphonate linkage at the cleavage site transforms topoisomerase IB into a potent endonuclease. The nuclease reaction entails formation and surprisingly rapid hydrolysis of a covalent enzyme-DNA methylphosphonate intermediate. The approximately 30,000-fold acceleration in the rate of hydrolysis of a methylphosphonate versus phosphodiester suggests that repulsion of water by the DNA phosphate anion suppresses the latent nuclease function of topoisomerase IB. These findings expose an Achilles' heel of topoisomerases as guardians of the genome, and they have broad implications for understanding enzymatic phosphoryl transfer.  相似文献   

20.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号