首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

2.
MOTIVATION: Protein families can be defined based on structure or sequence similarity. We wanted to compare two protein family databases, one based on structural and one on sequence similarity, to investigate to what extent they overlap, the similarity in definition of corresponding families, and to create a list of large protein families with unknown structure as a resource for structural genomics. We also wanted to increase the sensitivity of fold assignment by exploiting protein family HMMs. RESULTS: We compared Pfam, a protein family database based on sequence similarity, to Scop, which is based on structural similarity. We found that 70% of the Scop families exist in Pfam while 57% of the Pfam families exist in Scop. Most families that occur in both databases correspond well to each other, but in some cases they are different. Such cases highlight situations in which structure and sequence approaches differ significantly. The comparison enabled us to compile a list of the largest families that do not occur in Scop; these are suitable targets for structure prediction and determination, and may be useful to guide projects in structural genomics. It can be noted that 13 out of the 20 largest protein families without a known structure are likely transmembrane proteins. We also exploited Pfam to increase the sensitivity of detecting homologs of proteins with known structure, by comparing query sequences to Pfam HMMs that correspond to Scop families. For SWISSPROT+TREMBL, this yielded an increase in fold assignment from 31% to 42% compared to using FASTA only. This method assigned a structure to 22% of the proteins in Saccharomyces cerevisiae, 24% in Escherichia coli, and 16% in Methanococcus jannaschii.  相似文献   

3.
We report a detailed classification of disulfide patterns to further understand the role of disulfides in protein structure and function. The classification is applied to a unique searchable database of disulfide patterns derived from the SwissProt and Pfam databases. The disulfide database contains seven times the number of publicly available disulfide annotations. Each disulfide pattern in the database captures the topology and cysteine spacing of a protein domain. We have clustered the domains by their disulfide patterns and visualized the results using a novel representation termed the "classification wheel." The classification is applied to 40,620 protein domains with 2-10 disulfides. The effectiveness of the classification is evaluated by determining the extent to which proteins of similar structure and function are grouped together through comparison with the SCOP and Pfam databases, respectively. In general, proteins with similar disulfide patterns have similar structure and function, even in cases of low sequence similarity, and we illustrate this with specific examples. Using a measure of disulfide topology complexity, we find that there is a predominance of less complex topologies. We also explored the importance of loss or addition of disulfides to protein structure and function by linking classification wheels through disulfide subpattern comparisons. This classification, when coupled with our disulfide database, will serve as a useful resource for searching and comparing disulfide patterns, and understanding their role in protein structure, folding, and stability. Proteins in the disulfide clusters that do not contain structural information are prime candidates for structural genomics initiatives, because they may correspond to novel structures.  相似文献   

4.
5.
It is well known that the structure is currently available only for a small fraction of known protein sequences. It is urgent to discover the important features of known protein sequences based on present protein structures. Here, we report a study on the size distribution of protein families within different types of folds. The fold of a protein means the global arrangement of its main secondary structures, both in terms of their relative orientations and their topological connections, which specify a certain biochemical and biophysical aspect. We first search protein families in the structural database SCOP against the sequence-based database Pfam, and acquire a pool of corresponding Pfam families whose structures can be deemed as known. This pool of Pfam families is called the sample space for short. Then the size distributions of protein families involving the sample space, the Pfam database and the SCOP database are obtained. The results indicate that the size distributions of protein families under different kinds of folds abide by similar power-law. Specially, the largest families scatter evenly in different kinds of folds. This may help better understand the relationship of protein sequence, structure and function. We also show that the total of proteins with known structures can be considered a random sample from the whole space of protein sequences, which is an essential but unsettled assumption for related predictions, such as, estimating the number of protein folds in nature. Finally we conclude that about 2957 folds are needed to cover the total Pfam families by a simple method.  相似文献   

6.
Structural genomics projects require strategies for rapidly recognizing protein sequences appropriate for routine structure determination. For large proteins, this strategy includes the dissection of proteins into structural domains that form stable native structures. However, protein dissection essentially remains an empirical and often a tedious process. Here, we describe a simple strategy for rapidly identifying structural domains and assessing their structures. This approach combines the computational prediction of sequence regions corresponding to putative domains with an experimental assessment of their structures and stabilities by NMR and biochemical methods. We tested this approach with nine putative domains predicted from a set of 108 Thermus thermophilus HB8 sequences using PASS, a domain prediction program we previously reported. To facilitate the experimental assessment of the domain structures, we developed a generic 6-hour His-tag-based purification protocol, which enables the sample quality evaluation of a putative structural domain in a single day. As a result, we observed that half of the predicted structural domains were indeed natively folded, as judged by their HSQC spectra. Furthermore, two of the natively folded domains were novel, without related sequences classified in the Pfam and SMART databases, which is a significant result with regard to the ability of structural genomics projects to uniformly cover the protein fold space.  相似文献   

7.
8.
Structural comparison reveals remote homology that often fails to be detected by sequence comparison. The DALI web server ( http://ekhidna2.biocenter.helsinki.fi/dali ) is a platform for structural analysis that provides database searches and interactive visualization, including structural alignments annotated with secondary structure, protein families and sequence logos, and 3D structure superimposition supported by color-coded sequence and structure conservation. Here, we are using DALI to mine the AlphaFold Database version 1, which increased the structural coverage of protein families by 20%. We found 100 remote homologous relationships hitherto unreported in the current reference database for protein domains, Pfam 35.0. In particular, we linked 35 domains of unknown function (DUFs) to the previously characterized families, generating a functional hypothesis that can be explored downstream in structural biology studies. Other findings include gene fusions, tandem duplications, and adjustments to domain boundaries. The evidence for homology can be browsed interactively through live examples on DALI's website.  相似文献   

9.
BackgroundProtein domains are commonly used to assess the functional roles and evolutionary relationships of proteins and protein families. Here, we use the Pfam protein family database to examine a set of candidate partial domains. Pfam protein domains are often thought of as evolutionarily indivisible, structurally compact, units from which larger functional proteins are assembled; however, almost 4% of Pfam27 PfamA domains are shorter than 50% of their family model length, suggesting that more than half of the domain is missing at those locations. To better understand the structural nature of partial domains in proteins, we examined 30,961 partial domain regions from 136 domain families contained in a representative subset of PfamA domains (RefProtDom2 or RPD2).ResultsWe characterized three types of apparent partial domains: split domains, bounded partials, and unbounded partials. We find that bounded partial domains are over-represented in eukaryotes and in lower quality protein predictions, suggesting that they often result from inaccurate genome assemblies or gene models. We also find that a large percentage of unbounded partial domains produce long alignments, which suggests that their annotation as a partial is an alignment artifact; yet some can be found as partials in other sequence contexts.ConclusionsPartial domains are largely the result of alignment and annotation artifacts and should be viewed with caution. The presence of partial domain annotations in proteins should raise the concern that the prediction of the protein’s gene may be incomplete. In general, protein domains can be considered the structural building blocks of proteins.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0656-7) contains supplementary material, which is available to authorized users.  相似文献   

10.
Standley DM  Toh H  Nakamura H 《Proteins》2008,72(4):1333-1351
A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized.  相似文献   

11.
The current pace of structural biology now means that protein three-dimensional structure can be known before protein function, making methods for assigning homology via structure comparison of growing importance. Previous research has suggested that sequence similarity after structure-based alignment is one of the best discriminators of homology and often functional similarity. Here, we exploit this observation, together with a merger of protein structure and sequence databases, to predict distant homologous relationships. We use the Structural Classification of Proteins (SCOP) database to link sequence alignments from the SMART and Pfam databases. We thus provide new alignments that could not be constructed easily in the absence of known three-dimensional structures. We then extend the method of Murzin (1993b) to assign statistical significance to sequence identities found after structural alignment and thus suggest the best link between diverse sequence families. We find that several distantly related protein sequence families can be linked with confidence, showing the approach to be a means for inferring homologous relationships and thus possible functions when proteins are of known structure but of unknown function. The analysis also finds several new potential superfamilies, where inspection of the associated alignments and superimpositions reveals conservation of unusual structural features or co-location of conserved amino acids and bound substrates. We discuss implications for Structural Genomics initiatives and for improvements to sequence comparison methods.  相似文献   

12.

Background  

Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as iPfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the iPfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases.  相似文献   

13.
Chandonia JM  Brenner SE 《Proteins》2005,58(1):166-179
Structural genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the "Pfam5000" strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These strategies include complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at the European Bioinformatics Institute (EBI). Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68% of all prokaryotic proteins (covering 59% of residues) and 61% of eukaryotic proteins (40% of residues). More fine-grained coverage that would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example, to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: A significant fraction (about 30-40% of the proteins and 40-60% of the residues) of each proteome is classified in small families, which may have little overlap with other species of interest. Random selection of targets from one or more genomes is similar to the Pfam5000 strategy in that proteins from larger families are more likely to be chosen, but substantial effort would be spent on small families.  相似文献   

14.
SMART (Simple Modular Architecture Research Tool, http://smart.embl-heidelberg.de) is a web-based resource used for the annotation of protein domains and the analysis of domain architectures, with particular emphasis on mobile eukaryotic domains. Extensive annotation for each domain family is available, providing information relating to function, subcellular localization, phyletic distribution and tertiary structure. The January 2002 release has added more than 200 hand-curated domain models. This brings the total to over 600 domain families that are widely represented among nuclear, signalling and extracellular proteins. Annotation now includes links to the Online Mendelian Inheritance in Man (OMIM) database in cases where a human disease is associated with one or more mutations in a particular domain. We have implemented new analysis methods and updated others. New advanced queries provide direct access to the SMART relational database using SQL. This database now contains information on intrinsic sequence features such as transmembrane regions, coiled-coils, signal peptides and internal repeats. SMART output can now be easily included in users’ documents. A SMART mirror has been created at http://smart.ox.ac.uk.  相似文献   

15.
Classifications of proteins into groups of related sequences are in some respects like a periodic table for biology, allowing us to understand the underlying molecular biology of any organism. Pfam is a large collection of protein domains and families. Its scientific goal is to provide a complete and accurate classification of protein families and domains. The next release of the database will contain over 10,000 entries, which leads us to reflect on how far we are from completing this work. Currently Pfam matches 72% of known protein sequences, but for proteins with known structure Pfam matches 95%, which we believe represents the likely upper bound. Based on our analysis a further 28,000 families would be required to achieve this level of coverage for the current sequence database. We also show that as more sequences are added to the sequence databases the fraction of sequences that Pfam matches is reduced, suggesting that continued addition of new families is essential to maintain its relevance.  相似文献   

16.
Availability of the human genome data has enabled the exploration of a huge amount of biological information encoded in it. There are extensive ongoing experimental efforts to understand the biological functions of the gene products encoded in the human genome. However, computational analysis can aid immensely in the interpretation of biological function by associating known functional/structural domains to the human proteins. In this article we have discussed the implications of such associations. The association of structural domains to human proteins could help in prioritizing the targets for structure determination in the structural genomics initiatives. The protein kinase family is one of the most frequently occurring protein domain families in the human proteome while P-loop hydrolase, which comprises many GTPases and ATPases, is a highly represented superfamily. Using the superfamily relationships between families of unknown and known structures we could increase structural information content of the human genome by about 5%. We could also make new associations of domain families to 33 human proteins that are potentially linked to genetically inherited diseases.  相似文献   

17.
Detection of protein homology via sequence similarity has important applications in biology, from protein structure and function prediction to reconstruction of phylogenies. Although current methods for aligning protein sequences are powerful, challenges remain, including problems with homologous overextension of alignments and with regions under convergent evolution. Here, we test the ability of the profile hidden Markov model method HMMER3 to correctly assign homologous sequences to >13 000 manually curated families from the Pfam database. We identify problem families using protein regions that match two or more Pfam families not currently annotated as related in Pfam. We find that HMMER3 E-value estimates seem to be less accurate for families that feature periodic patterns of compositional bias, such as the ones typically observed in coiled-coils. These results support the continued use of manually curated inclusion thresholds in the Pfam database, especially on the subset of families that have been identified as problematic in experiments such as these. They also highlight the need for developing new methods that can correct for this particular type of compositional bias.  相似文献   

18.
TIGRFAMs is a collection of manually curated protein families consisting of hidden Markov models (HMMs), multiple sequence alignments, commentary, Gene Ontology (GO) assignments, literature references and pointers to related TIGRFAMs, Pfam and InterPro models. These models are designed to support both automated and manually curated annotation of genomes. TIGRFAMs contains models of full-length proteins and shorter regions at the levels of superfamilies, subfamilies and equivalogs, where equivalogs are sets of homologous proteins conserved with respect to function since their last common ancestor. The scope of each model is set by raising or lowering cutoff scores and choosing members of the seed alignment to group proteins sharing specific function (equivalog) or more general properties. The overall goal is to provide information with maximum utility for the annotation process. TIGRFAMs is thus complementary to Pfam, whose models typically achieve broad coverage across distant homologs but end at the boundaries of conserved structural domains. The database currently contains over 1600 protein families. TIGRFAMs is available for searching or downloading at www.tigr.org/TIGRFAMs.  相似文献   

19.
20.
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号