首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is assumed that CD8(+) cytotoxic T lymphocytes (CTLs) mediate direct lysis of allografts and that their growth, differentiation, and activation are dependent upon cytokine production by CD4(+) helper T lymphocytes. In the present study, the effector cells responsible for the rejection of i.p. allografted, CTL-resistant Meth A tumor cells from C57BL/6 mice were characterized. The cytotoxic activity was associated exclusively with peritoneal exudate cells and not with the cells in lymphoid organs or blood. On day 8, when the cytotoxic activity reached a peak, 3 types of cells (i.e., lymphocytes, granulocytes, and macrophages) infiltrated into the rejection site; and allograft-induced macrophages (AIM) were cytotoxic against the allograft. Bacterially-elicited macrophages also exhibited cytotoxic activity (approximately 1/2 of that of AIM) against Meth A cells, whereas the cytotoxic activity of AIM against these cells but not that of bacterially-elicited macrophages was completely inhibited by the addition of donor (H-2(d))-type lymphoblasts, suggesting H-2(d)-specific cytotoxicity of AIM against Meth A cells. In contrast, resident macrophages were inactive toward Meth A cells. Morphologically, the three-dimensional appearance of AIM showed them to be unique large elongated cells having radiating peripheral filopodia and long cord-like extensions arising from their cytoplasmic surfaces. The ultrastructural examination of AIM revealed free ribosomes in their cytoplasm, which was often deformed by numerous large digestive vacuoles. These results indicate that AIM are the H-2(d)-specific effector cells for allografted Meth A cells and are a more fully activated macrophage with unique morphological features.  相似文献   

2.
Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans.   总被引:3,自引:0,他引:3       下载免费PDF全文
Stimulation of human vaccinia virus immune peripheral blood mononuclear cells in vitro from vaccinia virus-immune donors with live vaccinia virus-infected autologous cells generated vaccinia virus-specific cytotoxic T lymphocytes (CTL) capable of lysing vaccinia virus-infected cells. We generated vaccinia virus-specific CD8+ clones and CD4+ CTL lines by limiting dilution from two donors by using peripheral blood mononuclear cells obtained 2 months or 4 years postrevaccination with vaccinia virus. These results demonstrate that vaccinia virus-specific CTL are generated as a result of immunization of humans with vaccinia virus and that both CD8(+)- and CD4(+)-specific T cells are maintained as memory cells.  相似文献   

3.
We have generated lymphocytic choriomeningitis virus-specific, H-2-restricted cytotoxic thymus-derived lymphocyte (CTL) clones. By using these reagents in several in vitro assays with infected target cells, we show that CTLs by themselves prevent the release of infectious virus into culture fluids and significantly lower the titers of infectious virus previously produced. This ability of cloned CTLs is not influenced by monensin. However, monensin does abrogate the ability of CTLs from spleens of mice primed 6 to 8 days previously with virus to kill virus-infected syngeneic targets. When tested for the participation of lymphokines in this system, the CTLs proliferate when reacted with syngeneic lymphocytic choriomeningitis virus-infected macrophages but fail to make interleukin-2. These CTLs make gamma interferon when reacted with syngeneic virus-infected targets. However, the production of interferon does not directly correlate with CTL-mediated killing. The number of H-2K and D molecules expressed on the target cell surface is not altered during the course of lymphocytic choriomeningitis virus infection. Electron microscopy shows finger-like projections of the CTL clone thrust into the infected cell and lesions bearing an internal diameter of approximately 15 nm in those membranes, illustrating the lytic process.  相似文献   

4.
Genetically sensitive mice (i.e. H-2(d) haplotype) infected with a natural mouse pathogen named ectromelia virus (EV) can develop a mousepox. Virus replicates well in the skin, next in the draining lymph nodes (DLNs) and then in the spleen and liver, where it may induce extensive necrosis with strong inflammatory reaction. It is well known from the studies defined on some other viruses that a correlation, functional link and powerful help exist between MHC class I-restricted CD8(+) and MHC class II-restricted CD4(+) virus-specific cytotoxic T lymphocytes (CTLs). However, in the case of mousepox the role of CD4(+) CTLs is still controversial and some reports support the notion that induction of EV-specific CD4(+) CTLs is nonessential for the generation of virus-specific immune response. Consequently, this study was designed to evaluate EV-specific CD8(+) and CD4(+) CTL activity in the DLNs, spleen, skin and conjunctivae of BALB/c (H-2(d)) mice at 7 and 14 days p.i. with Moscow strain of EV. By using bulk cytotoxicity assay and immunosurgery of effector T cells with mAb specific for CD4(+) and/or CD8(+) T cells our data show that EV-specific CD8(+) CTLs predominated in DLNs and spleen at 7 days (67 and 66% of total CTLs, respectively) and 14 days p.i. (63 and 69% of total CTLs, respectively). In contrast, we found that EV clearance from the cutaneous lesions during mousepox is CD4(+) CTL-dependent at 7 days p.i. (59% of total CTLs), whereas at 14 days p.i. CD8(+) CTLs predominated in the epidermis, accounting for 72% of the total EV-specific CTLs. Our studies showed that the population of EV-specific CTLs is heterogeneous and contains cells of both phenotypes: CD8(+) and CD4(+). However, these effector cells did not express a similar tendency in cytotoxic activity in the DLNs, spleen and skin in comparison to the conjunctivae where EV-specific CD8(+) and CD4(+) CTLs were not detected at 7 days p.i. and at peak of mousepox conjunctivitis (14 days p.i.). Our results are discussed in terms of the value of EV to study antiviral CTL responses in the genetically susceptible host.  相似文献   

5.
C57BL/6 (B6, H-2b) mice are CTL responders to both Sendai virus and Moloney leukemia virus. In the former response the H-2Kb class I MHC molecule is used as CTL restriction element, in the latter response the H-2Db molecule. B6 dendritic cells (DC) are superior in the presentation of Sendai virus Ag to CTL in comparison with B6 normal spleen cells. Con A blasts have even less capacity to present viral Ag than NSC, and LPS blasts show an intermediate capacity to present viral Ag. H-2Kb mutant bm1 mice do not generate a CTL response to Sendai virus, but respond to Moloney leukemia virus, as demonstrated by undetectable CTL precursors to Sendai virus and a normal CTL precursor frequency to Moloney virus. Compared to B6 mice, other H-2Kb mutant mice show decreased Sendai virus-specific CTL precursor frequencies in a hierarchy reflecting the response in bulk culture. The Sendai virus-specific CTL response defect of bm1 mice was not restored by highly potent Sendai virus-infected DC as APC for in vivo priming and/or in vitro restimulation. In mirror image to H-2Kb mutant bm1 mice, H-2Db mutant bm14 mice do not generate a CTL response to Moloney virus, but respond normally to Sendai virus. This specific CTL response defect was restored by syngeneic Moloney virus-infected DC for in vitro restimulation. This response was Kb restricted indicating that the Dbm14 molecule remained largely defective and that a dormant Kb repertoire was aroused after optimal Ag presentation by DC. In conclusion, DC very effectively present viral Ag to CTL. However, their capacity to restore MHC class I determined specific CTL response defects probably requires at least some ability of a particular MHC class I/virus combination to associate and thus form an immunogenic complex.  相似文献   

6.
CD8(+) T cells play an essential role in immunity to Chlamydia pneumoniae (Cpn). However, the target Ags recognized by Cpn-specific CD8(+) T cells have not been identified, and the mechanisms by which this T cell subset contributes to protection remain unknown. In this work we demonstrate that Cpn infection primes a pathogen-specific CD8(+) T cell response in mice. Eighteen H-2(b) binding peptides representing sequences from 12 Cpn Ags sensitized target cells for MHC class I-restricted lysis by CD8(+) CTL generated from the spleens and lungs of infected mice. Peptide-specific IFN-gamma-secreting CD8(+) T cells were present in local and systemic compartments after primary infection, and these cells expanded after pathogen re-exposure. CD8(+) T cell lines to the 18 Cpn epitope-bearing peptides were cytotoxic, displayed a memory phenotype, and secreted IFN-gamma and TNF-alpha, but not IL-4. These CTL lines lysed Cpn-infected macrophages, and the lytic activity was inhibited by brefeldin A, indicating endogenous processing of CTL Ags. Finally, Cpn peptide-specific CD8(+) CTL suppressed chlamydial growth in vitro by direct lysis of infected cells and by secretion of IFN-gamma and other soluble factors. These studies provide information on the mechanisms by which CD8(+) CTL protect against Cpn, furnish the tools to investigate their possible role in immunopathology, and lay the foundation for future work to develop vaccines against acute and chronic Cpn infections.  相似文献   

7.
We have used H-2Db-restricted CTL clones specific for peptide 365 to 380 of the influenza nucleoprotein to seek evidence for interaction between the TCR and peptide Ag. Preincubation of these CTL with peptide 365 to 380 resulted in inhibition of target cell lysis. In addition, CTL lysed allogeneic targets in the presence of soluble peptide Ag. Investigation of the basis of these two phenomena revealed a requirement for expression of H-2Db molecules by the effector cells. Either preincubation with anti-Db mAb or the use of chimera-derived H-2d CTL specific for Db plus peptide ablated both peptide-dependent inhibition and lysis of allogeneic cells, suggesting these activities are a consequence of self-presentation of peptide Ag by CTL. Lysis of allogeneic cells appears to represent bystander lysis by CTL in response to recognition of peptide on other effector cells. Lysis inhibition is attributable to a highly potent form of cold target inhibition in which CTL serve as their own cold targets.  相似文献   

8.
To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8(+) CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8(+) CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/beta2m complexes. All SHIV-infected Mamu-A*01(+) rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8(+) CTL response is dominant and the p41A- and p68A-specific CD8(+) CTL responses are nondominant. These results indicate that CD8(+) CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8(+) CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.  相似文献   

9.
In C57BL/6 (B6, H-2b) mice, the secondary in vitro CTL response against Moloney leukemia virus is restricted and regulated by the H-2Db locus. B6.C-H- 2bm13 ( bm13 ) mice, however, carrying a mutation at the Db locus, show an increased H-2Kb-restricted CTL response without a demonstrable CTL component restricted by the mutant Dbm13 molecule (D----K shift). These purely Kb-restricted bm13 virus-specific CTL were incubated with a series of Kb mutant virus-infected target cells to study the effect of the mutations at the target cell level. Of six Kb-mutant virus-infected target cells tested, bm1 cells were not recognized and bm8 cells were recognized only marginally by bm13 virus-specific CTL, whereas bm3 , bm5 , bm6 , and bm11 cells were fully recognized. Thus, the bm3 , bm5 , bm6 , and bm11 Kb mutants fully share the relevant H-2K restriction specificities with H-2Kb, whereas the bm1 mutant totally and the bm8 mutant almost completely lack these specificities. This result differs markedly from the restriction site relationships among B6 and these Kb mutants in other antigenic systems. The most striking example concerns the bm11 mutant, which is fully recognized by Moloney-specific CTL, but not at all by Sendai, minor H (H-3.1, H-4.2), and sulfhydryl hapten-specific CTL. Monoclonal anti-H-2Kb antibody B8-3-24 inhibited virus-specific lysis by bm13 CTL of all Kb virus-infected mutant target cells to which this antibody binds. Lysis of bm5 and bm11 but not of bm3 target cells was inhibited, in line with the fact that B8-3-24 antibody does not bind bm3 . On the other hand, not only bm5 and bm11 but also bm3 virus-infected target cells blocked virus-specific lysis to the same extent as syngeneic bm13 target cells. Therefore, bm13 virus-specific CTL populations do not recognize the discrete cluster alteration in the Kbm3 molecule, as identified by antibody B8-3-24. The bm1 and the bm8 mutations, which have structural alterations in completely different sites of the Kb molecule, show complete or almost complete loss, respectively, of Kb-Moloney restriction sites. This finding supports the notion that these virus-specific CTL recognize conformational determinants rather than linear amino acid sequences.  相似文献   

10.
Destruction of virus-infected cells by CTL is an extremely sensitive and efficient process. Our previous data suggest that LFA-1-ICAM-1 interactions in the peripheral supramolecular activation cluster (pSMAC) of the immunological synapse mediate formation of a tight adhesion junction that might contribute to the sensitivity of target cell lysis by CTL. Herein, we compared more (CD8(+)) and less (CD4(+)) effective CTL to understand the molecular events that promote efficient target cell lysis. We found that abrogation of the pSMAC formation significantly impaired the ability of CD8(+) but not CD4(+) CTL to lyse target cells despite having no effect of the amount of released granules by both CD8(+) and CD4(+) CTL. Consistent with this, CD4(+) CTL break their synapses more often than do CD8(+) CTL, which leads to the escape of the cytolytic molecules from the interface. CD4(+) CTL treatment with a protein kinase Ctheta inhibitor increases synapse stability and sensitivity of specific target cell lysis. Thus, formation of a stable pSMAC, which is partially controlled by protein kinase Ctheta, functions to confine the released lytic molecules at the synaptic interface and to enhance the effectiveness of target cell lysis.  相似文献   

11.
Hantaan virus, the prototypic member of the Hantavirus genus, causes hemorrhagic fever with renal syndrome in humans. We examined the human memory T-lymphocyte responses of three donors who had previous laboratory-acquired infections with Hantaan virus. We demonstrated virus-specific responses in bulk cultures of peripheral blood mononuclear cells (PBMC) from all donors. Bulk T-cell responses were directed against either Hantaan virus nucleocapsid (N) or G1 protein, and these responses varied between donors. We established both CD4(+) and CD8(+) N-specific cell lines from two donors and CD4(+) G1-specific cell lines from a third donor. All CD8(+) cytotoxic T-lymphocyte (CTL) lines recognized one of two epitopes on the nucleocapsid protein: one epitope spanning amino acids 12 to 20 and the other spanning amino acids 421 to 429. The CTL lines specific for amino acids 12 to 20 were restricted by HLA B51, and those specific for amino acids 421 to 429 were restricted by HLA A1. The N-specific CTL lines isolated from these two donors included both Hantaan virus-specific CTLs and hantavirus cross-reactive CTLs. Responses to both epitopes are detectable in short-term bulk cultures of PBMC from one donor, and precursor frequency analysis confirms that CTLs specific for these epitopes are present at relatively high precursor frequencies in the peripheral T-cell pool. These data suggest that infection with Hantaan virus results in the generation of CTL to limited epitopes on the nucleocapsid protein and that infection also results in the generation of cross-reactive T-cell responses to distantly related hantaviruses which cause the distinct hantavirus pulmonary syndrome. This is the first demonstration of human T-lymphocyte responses to Hantaan virus.  相似文献   

12.
Murine cells (L929, MC57G, and P815 mastocytoma) defectively infected with the egg-adapted vaccine strain of mumps virus were found to be susceptible to cytotoxic T-lymphocyte (CTL)-mediated lysis. In vitro secondary, but not in vivo primary, generated CTL caused cytolysis of these targets in an H-2-restricted manner. UV-inactivated-mumps virus-coated murine cells were also found to be susceptible to CTL-mediated lysis. Comparisons of murine CTL-mediated lysis by three paramyxoviruses (mumps, Sendai, and Newcastle disease viruses) indicated that no cross-reactivity occurred. The CTL response with mumps virus exhibited specific unresponsiveness patterns, as influenced by the H-2 K/D regions of the mouse strains, that were partially different from those of Sendai virus and Newcastle disease virus.  相似文献   

13.
Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCL) are potent inducers of cytotoxic T-lymphocytes (CTL) in allogeneic mixed lymphocyte cultures (MLC). The contribution of EBV antigens to the induction of cytotoxic responses was investigated by comparing CTL clones derived from allogeneic MLCs of lymphocytes from one EBV seropositive and one seronegative donor for their capacity to lyse paired EBV positive and negative targets. The majority of the clones showed a conventional "HLA-specific" cytotoxicity and lysed equally well HLA-matched LCLs and mitogen-induced T- or B-blasts. A minority of the clones from both donors exhibited an "LCL-selective" killing potential as they lysed poorly T- and B-blasts. The LCL-selective clones did not recognize EBV antigens because they could not discriminate between EBV negative Burkitt lymphoma (BL) lines and their in vitro EBV-converted sublines. MAbs to CD3, CD8, and MHC class I antigens blocked the lysis of LCLs by HLA-specific and LCL-selective CTLs with comparable efficiency suggesting that the two effector types express T-cell receptors of similar affinity. T-blasts were unable to inhibit the lysis of LCLs in cross competition assays. This correlated with a significantly lower expression of the cell adhesion molecules ICAM-1 and LFA-3. The results suggest that stimulation with allogeneic LCLs activates HLA class I-specific CTLs with variable target cell avidity. Only CTLs that act independently of the enhancing effect of cell adhesion molecules are able to lyse mitogen-induced T- and B-blasts.  相似文献   

14.
The role of negatively signaling NK cell receptors of the Ly49 family on the specificity of the acute CD8(+) cytotoxic T-lymphocyte (CTL) response was investigated in lymphocytic choriomeningitis virus (LCMV)-infected C57BL/6 mice. Activated CD8(+) T cells coexpressing Ly49G2 expanded during LCMV infection, and T-cell receptor analyses by flow cytometry and CDR3 spectratyping revealed a unique polyclonal T-cell population in the Ly49G2(+) fraction. These cells lysed syngeneic targets infected with LCMV or coated with two of three LCMV immunodominant peptides examined. Transfection of these sensitive targets with H2D(d), a ligand for Ly49G2, inhibited lysis. This was reversed by antibody to Ly49G2, indicating effective negative signaling. LCMV characteristically induces an anti-H2(d) allospecific T-cell response that includes T-cell clones cross-reactive between allogeneic and LCMV-infected syngeneic targets. The CD8(+) Ly49G2(+) population mediated no allospecific killing, nor was any NK-like killing observed against YAC-1 cells. This study shows that CD8(+) Ly49G2(+) cells participate in the virus-induced CTL response but lyse a more restricted range of targets than the rest of the virus-induced CTL population.  相似文献   

15.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

16.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

17.
C57BL/6 (B6; H-2(b)) mice mount strong AKR/Gross murine leukemia virus (MuLV)-specific CD8(+) CTL responses to the immunodominant K(b)-restricted epitope, KSPWFTTL, of endogenous AKR/Gross MuLV. In sharp contrast, spontaneous virus-expressing AKR.H-2(b) congenic mice are low/nonresponders for the generation of AKR/Gross MuLV-specific CTL. Furthermore, when viable AKR.H-2(b) spleen cells are cocultured with primed responder B6 antiviral precursor CTL, the AKR.H-2(b) cells function as "veto" cells that actively mediate the inhibition of antiviral CTL generation. AKR.H-2(b) veto cell inhibition is virus specific, MHC restricted, contact dependent, and mediated through veto cell Fas ligand/responder T cell Fas interactions. In this study, following specific priming and secondary in vitro restimulation, antiretroviral CD8(+) CTL were identified by a labeled K(b)/KSPWFTTL tetramer and flow cytometry, enabling direct visualization of AKR.H-2(b) veto cell-mediated depletion of these CTL. A 65-93% reduction in the number of B6 K(b)/KSPWFTTL tetramer(+) CTL correlated with a similar reduction in antiviral CTL cytotoxicity. Addition on sequential days to the antiviral CTL restimulation cultures of either 1) AKR.H-2(b) veto cells or 2) a blocking Fas-Ig fusion protein (to cultures also containing AKR.H-2(b) veto cells) to block inhibition demonstrated that AKR.H-2(b) veto cells begin to inhibit B6 precursor CTL/CTL expansion during days 2 and 3 of the 6-day culture. Shortly thereafter, a high percentage of B6 tetramer(+) CTL cocultured with AKR.H-2(b) veto cells was annexin V positive and Fas(high), indicating apoptosis as the mechanism of veto cell inhibition. Experiments using the irreversible inhibitor emetine demonstrated that AKR.H-2(b) cells had to be metabolically active and capable of protein synthesis to function as veto cells. Of the tetramer-positive CTL that survived veto cell-mediated apoptosis, there was no marked skewing from the preferential usage of Vbeta4, 8.1/8.2, and 11 TCR normally observed. These findings provide further insight into the complexity of host/virus interactions and suggest a fail-safe escape mechanism by virus-infected cells for epitopes residing in critical areas of viral proteins that cannot accommodate variations of amino acid sequence.  相似文献   

18.
Borna disease virus (BDV)-induced immunopathology in mice is most prominent in strains carrying the major histocompatibility complex H-2k allele and is mediated by CD8(+) T cells that are directed against the viral nucleoprotein p40. We now identified the highly conserved octamer peptide TELEISSI, located between amino acid residues 129 and 136 of BDV p40, as a potent H-2K(k)-restricted cytotoxic T-cell (CTL) epitope. When added to the culture medium of L929 target cells, TELEISSI conferred sensitivity to lysis by CTLs isolated from brains of BDV-infected MRL mice with acute neurological disease. Vaccinia virus-mediated expression of a p40 variant with mutations in the two K(k)-specific anchor residues of the TELEISSI peptide (p40(E130K,I136T)) did not sensitize L929 target cells for lysis by BDV-specific CTLs, whereas expression of wild-type p40 did. Furthermore, unlike vaccination with wild-type p40, vaccination of persistently infected symptomless B10.BR mice with p40(E130K,I136T) did not result in central nervous system inflammation and neurological disease. These results demonstrate that TELEISSI is the immunodominant CTL epitope of BDV p40 in H-2k mice.  相似文献   

19.
The M2 protein of respiratory syncytial virus (RSV) is a protective antigen in H-2d, but not H-2b or H-2k mice. None of the other RSV proteins, excluding the surface glycoproteins that induce neutralizing antibodies, is protective in mice bearing these haplotypes. Thus, the M2 protein stands alone as a nonglycoprotein-protective antigen of RSV. The M2 protein is a target for murine Kd-restricted cytotoxic T lymphocytes (CTLs), and the resistance induced by infection with a vaccinia virus-RSV M2 (vac-M2) recombinant is mediated by CD8+ CTLs. Since the nonameric consensus sequence for H-2 Kd-restricted T-cell epitopes and the amino acid sequence of the M2 protein of subgroup A and B strains of RSV are known, the present study sought to identify the specific epitope(s) on the M2 protein recognized by CD8+ CTLs. This was done by examining the ability of four predicted Kd-specific motif peptides present in the M2 amino acid sequence of an RSV subgroup A strain to sensitize target cells for lysis by pulmonary or splenic CTLs obtained from mice infected with RSV or vac-M2. The following observations were made. First, two of the four peptides sensitized target cells for lysis by pulmonary or splenic CTLs induced by infection with either vac-M2 or RSV. Second, one of the two peptides, namely the 82-90 (M2) peptide, sensitized targets at a very low peptide concentration (10(-10) to 10(-12) M). Third, cold-target competition experiments revealed that the predominant CTL population induced by infection with vac-M2 or RSV recognized the 82-90 (M2) peptide, and this CTL population appeared to recognize the 71-79 (M2) peptide in a cross-reactive manner. Fourth, CTL recognition of targets sensitized with either the 71-79 (M2) or the 82-90 (M2) peptide was Kd restricted. Fifth, CTLs induced by infection with RSV subgroup A or B strains recognized the two M2 peptides. The findings suggest that the M2 protein of RSV contains an immunodominant Kd-restricted CTL epitope consisting of amino acid residues 82 to 90 (SYIGSINNI), which are shared by subgroup A and B RSVs.  相似文献   

20.
The requirement of direct covalent association of trinitrophenyl (Tnp) groups with cell surface components for functional interactions with anti-Tnp cytotoxic T lymphocytes (CTLs) was analyzed. This question was approached by comparing the ability of two methods of trinitrophenylation to render cells susceptible to lysis by anti-Tnp CTLs. As previously shown, cells modified with trinitrobenzene sulfonic acid were susceptible to H-2-restricted lysis by anti-Tnp CTLs. However, cells incubated with Sendai virus covalently associated with Tnp groups, were not rendered susceptible to lysis by anti-Tnp CTLs. These same target cells, however, were susceptible to H-2-restricted lysis by anti-Sendai virus CTLs. Direct analysis of the number of Tnp groups on cells modified by either method indicates no significant difference in the number of Tnp molecules associated with the different target cells. The results suggest that direct covalent association of Tnp groups with cell surface specific components is a minimal molecular requirement for recognition and lysis by anti-Tnp CTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号