首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

2.
The saturating pulse fluorescence technique was applied to study photoinhibition of photosynthesis in outdoor cultures of the cyanobacterium Spirulina platensis (Nordstedt) Geitler strain M2 grown under high oxygen and low temperature stress. Diurnal changes in maximum photochemical yield (Fv/Fm), photon yield of PSII (ΔF/F 'm), and nonphotochemical quenching (qN) were measured using a portable, pulse-amplitude–modulated fluorometer. When solar irradiance reached the maximum value, the F v/Fm and ΔF/F 'm ratios of the Spirulina cultures grown under high oxygen stress decreased by 35% and 60%, respectively, as compared with morning values. The depression of the Fv/Fm and ΔF/F 'm ratios reached 55% and 84%, respectively, when high oxygen stress was combined with low temperature (i.e. 10° C below the optimal value for growth). Photoinhibition reduced the daily productivity of the culture grown under high oxygen stress by 33% and that of the culture grown under high oxygen–low temperature stress by 60%. Changes in the biomass yield of the cultures correlated well with changes in the daily integrated value of the estimated electron transport rate through the PSII (ΔF/F 'm × photon flux density). The results indicate that on-line chlorophyll fluorescence measurement is a powerful tool for assessing the photosynthetic performance of outdoor Spirulina cultures.  相似文献   

3.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

4.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

5.
The salinity and its interaction with high photon flux density (PFD) on in vivo chlorophyll fluorescence were investigated in isolated chloroplasts of mustard (Brassica juncea L. cv. Pusa Bold). Increase in salt stress decreases the protein contents of leaves and causes increase in lipid peroxidation. Fv/Fmratios suggesting that the efficiency of the photochemistry of PSII was not affected alone with the salt stressed plants. With high PFD, Fv/Fm ratio decreased with increased salt concentration. Our results indicate that salt stress enhances the photoinhibition of isolated chloroplasts.  相似文献   

6.
快速叶绿素荧光动力学可以在无损情况下探知叶片光合机构的损伤程度, 快速叶绿素荧光测定和分析技术(JIP-test)将测量值转化为多种具有生物学意义的参数, 因而被广泛应用于植物光合机构对环境的响应机制研究。该文研究了超大甜椒(Capsicum annuum)幼苗在强光及不同NaCl浓度胁迫下的荧光响应情况。与单纯强光胁迫相比, NaCl胁迫引起了叶绿素荧光诱导曲线的明显改变, 光系统II (PSII)光抑制加重, 同时PSII反应中心和受体侧受到明显影响, 而且高NaCl浓度胁迫下PSII供体侧受伤害明显, 同时PSI反应中心活性(P700+)在盐胁迫下明显降低。这些结果表明, NaCl胁迫会增强强光对超大甜椒光系统的光抑制, 并且浓度越高抑制越明显, 但对PSI的抑制作用低于PSII。高NaCl浓度胁迫易对PSII供体侧造成破坏, 且PSI光抑制严重。  相似文献   

7.
Doris Godde  Monika Hefer 《Planta》1994,193(2):290-299
The function of photosystem II (PSII) and the turnover of its D1 reaction-center protein were studied in spinach (Spinacia oleracea L.) plants set under mineral stress. The mineral deficiencies were induced either by supplying the plants with an acidic nutrient solution or by strongly reducing the supply of magnesium alone or together with sulfur. After exposure for 8–10 weeks to the different media, the plants were characterized by a loss of chlorophyll and an increase in starch content, indicating a disturbance in the allocation of assimilates. Depending on the severity of the mineral deficiencies the plants lost their ability to adapt even to moderate iradiances of 400 mol photons·m–2·s–1 and became photoinhibited, as indicated by the decrease in Fv/Fm (the ratio of yield of variable fluorescence to yield of maximal fluorescence when all reaction centers are closed). The loss of PSII function was induced by changes on the acceptor side of PSII. Fast fluorescence decay showed a loss of PSII centers with bound QB, the secondary quinone acceptor of PSII, and a fast reoxidation kinetic of q a - , the primary quinone acceptor of PSII, in the photoinactivated plants. No appreciable change could be observed in the amount of PSII centers with unbound QB and in QB-nonreducing PSII centers. Immunological studies showed that the contents of the D1 and D2 proteins of the PSII reaction center and of the 33-kDa protein of the water-splitting complex were diminished in the photoinhibited plants, and the occurrance of a new polypetide of 14 kDa that reacted with an antibody against the C-termius of the D1 protein. As shown by pulse-labelling experiments with [14C]leucine both degradation and synthesis of the D1 protein were enhanced in the mineral-deficient plants when compared to non-deficient plants. A stimulation of D1-protein turnover was also observed in pH 3-grown plants, which were not inhibited at growth-light conditions. Obviously, stimulation of D1-protein turnover prevented photoinhibition in these plants. However, in the Mg- and Mg/S-deficient plants even a further stimulation of D1-protein turnover could not counteract the increased rate of photoinactivation.Abbreviations amp(f,m,s) amplitude of the fast, (medium and slow) exponential component of fluorescence decay - Fm yield of maximum fluorescenc when all reaction centers are closed - Fo yield of intrinsic fluorescence at open PSII reaction centers in the dark - Fv yield of variable fluorescence, (difference between Fm and Fo) - LHC light-harvesting complex - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII Dedicated to Professor Dr. Dres. hc. Achim Trebst on the occasion of his 65th birthdayThis work was supported by grants from the BMFT and the Ministerium für Umwelt, Raumordnung and Landwirtschaft, Nordrhein-Westfalen. The authors thank H. Wietoska and M. Bronzel for skilful technical assistance.  相似文献   

8.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

9.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

10.
Effects of photoinhibition on photosynthesis in pea (Pisum sativum L.) leaves were investigated by studying the relationship between the severity of a photoinhibitory treatment (measured as Fv/Fm) and several photoacoustic and chlorophyll a fluorescence parameters. Because of the observed linear relationship between the decline of Fv/Fm and the potential oxygen evolution rate determined by the photoacoustic method, the parameter Fv/Fm was used as an indicator for the severity of photoinhibition. Our analysis revealed that part of the Photosystem II (PS II) reaction centers is inactive in oxygen evolution and is also less sensitive to photoinhibition. Correcting the parameter qP (fraction of open PS II reaction centers) for inactive PS II centers unveiled a strong increase of qP in severely inhibited pea leaves, indicating that the inactivated active centers do no longer contribute to qP and that photoinhibition has an all or none effect on PS II centers. Analysis of qE (energy quenching) demonstrated its initial increase possibly associated with dephosphorylation of LHC II. Analysis of qI (photoinhibition dependent quenching) showed that the half-time of recovery of qI increases steeply below an Fv/Fm of 0.65. This increase of the relaxation half-time corresponds with a decrease of the electron transport rate J and tentatively indicates that the supply of ATP, needed for the recovery, starts to decrease. The data indicate the necessity of correcting for inactive centers in order to make valuable conclusions about effects of photoinhibition on photosynthetic parameters.  相似文献   

11.
Summary Selaginella lepidophylla, the resurrection plant, curls dramatically during desiccation and the hypothesis that curling may help limit bright light-induced damage during desiccation and rehydration was tested under laboratory conditions. Restraint of curling during desiccation at 25° C and a constant irradiance of 2000 mol m–2 s]t-1 significantly decreased PSII and whole-chain electron transport and the Fv/Fm fluorescence yield ratio following rehydration relative to unrestrained plants. Normal curling during desiccation at 37.5°C and 200 mol m–2 s–1 irradiance did not fully protect against photoinhibition or chlorophyll photooxidation indicating that some light-induced damage occurred early in the desiccation process before substantial curling. Photosystem I electron transport was less inhibited by high-temperature, high-irradiance desiccation than either PSII or whole-chain electron transport and PSI was not significantly affected by restraint of curling during desiccation at 25°C and high irradiance. Previous curling also helped prevent photoinhibition of PSII electron transport and loss of whole-plant photosynthetic capacity as the plants uncurled during rehydration at high light. These results demonstrate that high-temperature desiccation exacerbated photoinhibition, PSI was less photoinhibited than PSII or whole-chain electron transport, and stem curling ameliorated bright light-induced damage helping to make rapid recovery of photosynthetic competence possible when the plants are next wetted.  相似文献   

12.
We studied the leaf structural, water status, and fast fluorescence responses of two palms, Socratea exorrhiza and Scheelea zonensis, under natural dry season conditions in a clearing (high light [HL] palms) and the forest understory (low light [LL] palms) on Barro Colorado Island, Panama. HL-Socratea leaves were more shade-adapted, less xeromorphic, and more strongly affected by drought than HL-Scheelea. Fv/Fm (the ratio of variable to maximum chlorophyll fluorescence) and t½ (the half-rise time of Fm) was lower in HL-leaves of both species, indicating photoinhibition. In HL-Scheelea, the light-induced reduction of Fv/Fm was much less than in HL-Socratea, and Fv/Fm recovered completely overnight. Patterns of relative water content, specific leaf dry weight, stable carbon isotope composition, and leaf conductance suggest that increased drought resistance in Scheelea reduces susceptibility to photoinhibition. An increase in Fo indicated the inactivation of PSII reaction centers in HL-Socratea. The very low chlorophyll a/b ratio and alterations in chloroplast ultrastructure in HL-Socratea are consistent with photoinhibition. Under LL, the species showed no appreciable interspecific differences in chlorophyll fluorescence. Excess light leads to low values of Fv/Fm in HL-plants relative to LL-plants on both leaf surfaces, particularly on the lower surface, due to a decrease of Fm in both surfaces and an increase in F., of lower surface. For both species, Fo for the lower surfaces of HL-plants was higher and t½ was markedly lower than for the upper surface, as is typical for shade-adapted leaves. Xeromorphic leaf structure may reduce susceptibility to photoinhibition during the dry season. Drought-enhanced photoinhibition could limit the ability of some species to exploit treefall gaps.  相似文献   

13.
Ultraviolet radiation effects were examined in natural phytoplankton communities from Rimouski (Canada), Ubatuba (Brazil), and Ushuaia (Argentina). Outdoor pump‐mixed mesocosms were submitted to ambient solar radiation (NUVB) and ambient with additional UV‐B radiation (UVBR) from lamps (HUVB), corresponding to a local 60% ozone depletion scenario. At all sites, neither algal biomass nor dark‐adapted Fv/Fm were significantly affected by additional UVBR, suggesting the presence of active UV protection or repair mechanisms. To examine the role of D1 protein turnover, essential for PSII repair, short‐term surface incubations were performed in the presence or absence of lincomycin, a chloroplast protein synthesis inhibitor. Effects on PSII were determined using chl a in vivo fluorescence, whereas the D1 protein was detected immunochemically. In the absence of D1 repair, D1 pools and Fv/Fm decreased to a similar extent under both light treatments. In the presence of D1 repair, D1 pools suffered faster net degradation under HUVB compared with NUVB, whereas Fv/Fm was maintained for both light treatments, suggesting that HUVB exposure in field populations had more effect on D1 synthesis and PSII repair than on D1 degradation. The fewer undamaged reaction centers remaining in phytoplankton under HUVB were able to maintain Fv/Fm or actually recovered during the dark acclimation before Fv/Fm measurements. The D1 pools suffered faster net degradation at the tropical site where high irradiance drove faster D1 degradation and high water temperature enabled fast enzymatic activities. This study shows the crucial role of dynamic changes in D1 turnover in the photobiology of natural planktonic communities across a range of latitudes.  相似文献   

14.
The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low‐light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv/Fm, than high‐light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de‐epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross‐section (σPSII) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a “lake” organization of the light‐harvesting complex.  相似文献   

15.
In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (φ PSII )m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3′-(3,4-dichlorophenyl)-1′,1′-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm− Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (∼0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (∼0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required.  相似文献   

16.
The growth response of Chlorella sorokiniana to certain irradiance, DO, and temperature demonstrated the possible causes of low productivity with this strain in outdoor cultures. The growth (biomass productivity) and chlorophyll fluorescence (Fv/Fm) were substantially reduced when the dissolved oxygen (above 200 % of air saturation) and temperature were elevated.  相似文献   

17.
This paper reports on the fast fluorescence responses of Gardenia jasminoides Ellis plantlets, at two successive stages (shoot multiplication and root induction) of culture in vitro. We test whether plantlets in vitro suffer photoinhibition during culture and whether the degree of photoautotrophy of these mixotrophic plantlets has any effect on the extent of photoinhibitory impairment. In this regard the effects of different sucrose levels in the medium and PPFD during growth on the development of photoautotrophy and the extent of photoinhibition were evaluated. Plantlets were grown under low, intermediate, and high (50, 100, and 300 mol m-2 s-1) PPFD, and at 3 different sucrose concentrations (0.5, 1.5, and 3.0%, w/v) in the medium, during shoot multiplication. During root induction the same growth conditions were assayed except for the high PPFD. The development of photoautotrophy was assessed via the difference between the stable carbon isotope composition of sucrose used as heterotrophic carbon source and that of leaflets grown in vitro. Plantlets from root induction showed more developed photoautotrophy than those from shoot multiplication. For both stages the low-sucrose medium stimulated the photoautotrophy of plantlets in vitro. In addition, intermediate PPFD induced photoautotrophy during shoot multiplication. For plantlets of both culture stages at the lowest PPFD no photoinhibition occurred irrespective of the sucrose concentration in media. However, during the shoot multiplication stage chlorophyll fluorescence measurements showed a decrease in F v /F m and in t 1/2 as growing PPFD increased, indicating photoinhibitory damage. The decline of F v /F m was caused mostly by an increase in F o , indicating the inactivation of PSII reaction centers. However plantlets growing under low sucrose showed reduced susceptibility to photoinhibition. During root induction, only plantlets cultured with high sucrose showed a decrease in F v /F m as PPFD increased, although t 1/2 remained unchanged. In this case, the decline of F v /F m was mostly due to a decrease in F m , which indicates increased photoprotection rather than occurrence of photodamage. Therefore, growth in low-sucrose media had a protective effect on the resistance of PSII to light stress. In addition, plantlets were more resistant to photoinhibition during root induction than during shoot multiplication. Results suggest that increased photoautotrophy of plantlets reduces susceptibility to photoinhibition during gardenia culture in vitro.Abbreviations AP apparent photosynthesis - Chl total chlorophyll content - Chl a/b chlorophyll a-to-b ratio - Chl/Car total chlorophyll-to-carotenoids ratio - 13C ratio of 13C/12C relative to PeeDee belemnite standard - F m maximum chlorophyll fluorescence - F o fluorescence emission when all reaction centres are open and the photochemical quenching is minimal - F v variable chlorophyll fluorescence (F m -F o ) - F v /F m the ratio of variable to maximum chlorophyll fluorescence, indicator photochemical efficiency of PSII - MS medium Murashige and Skoog (1962) medium - PPFD photosynthetic photon flux density - Rd dark respiration, t 1/2 the half-time of the increase from F o to F m - IAA indole butyric acid  相似文献   

18.
Wen  Xiaogang  Yang  Zhipan  Ding  Shunhua  Yang  Huixia  Zhang  Lixin  Lu  Congming  Lu  Qingtao 《Photosynthesis research》2021,150(1-3):159-177

Deg1 protease functions in protease and chaperone of PSII complex components, but few works were performed to study the effects of Deg1 on electron transport activities on the donor and acceptor side of PSII and its correlation with the photoprotection of PSII during photoinhibition. Therefore, we performed systematic and comprehensive investigations of electron transfers on the donor and acceptor sides of photosystem II (PSII) in the Deg1-reduced transgenic lines deg1-2 and deg1-4. Both the maximal quantum efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII) decreased significantly in the transgenic plants. Increases in nonphotochemical quenching (NPQ) and the dissipated energy flux per reaction center (DI0/RC) were also shown in the transgenic plants. Along with the decreased D1, CP47, and CP43 content, these results suggested photoinhibition under growth light conditions in transgenic plants. Decreased Deg1 caused inhibition of electron transfer on the PSII reducing side, leading to a decline in the number of QB-reducing centers and accumulation of QB-nonreducing centers. The Tm of the Q band shifted from 5.7 °C in the wild-type plant to 10.4 °C and 14.2 °C in the deg1-2 and deg1-4 plants, respectively, indicating an increase in the stability of S2QA¯ in transgenic plants. PSIIα in the transgenic plants largely reduced, while PSIIβ and PSIIγ increased with the decline in the Deg1 levels in transgenic plants suggesting PSIIα centers gradually converted into PSIIβ and PSIIγ centers in the transgenic plants. Besides, the connectivity of PSIIα and PSIIβ was downregulated in transgenic plants. Our results reveal that downregulation of Deg1 protein levels induced photoinhibition in transgenic plants, leading to loss of PSII activities on both the donor and acceptor sides in transgenic plants. These results give a new insight into the regulation role of Deg1 in PSII electron transport.

  相似文献   

19.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

20.
In a previous study, we characterized a high chlorophyll fluorescence Ipal mutant of Arabidopsis thallana, in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSII remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSll protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipal plants. Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号