首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of superoxide anions from human polymorphonuclear leukocytes induced by cytochalasin E was greatly enhanced by the pretreatment of the cells either with deuterium oxide or with concanavalin A. Colchicine, vinblastine and cyclic AMP inhibited the release. Cytochalasins A and B also suppressed the superoxide release. These observations suggest the involvement of microfilament-microtubule system in the production and release of superoxide anions induced by cytochalasin E.  相似文献   

2.
Actions of cytochalasins on polymorphonuclear leucocytes of guinea pig peritoneal exudates have been studied. When the leucocytes were treated with cytochalasin E, complete disappearance of pseudopods was observed during a time, which would be related with the inhibition of particle ingestion. Intracellular granules migrated to the cell periphery in ectoplasma and were afterwards excluded from the cells. Later, formation of cytoplasmic protuberations with irregular shapes and variable diameters (“zeiosis”) and of large vacuoles were observed. Similar changes were also observed in monocytes. These morphological changes were accompanied with metabolic alterations which mimicked those observed during phagocytosis: appearance of cyanide-insensitive respiration, stimulation of hexose monophosphate oxidative pathway and release of superoxide anions and lysosomal enzymes into suspending medium. Other members of the cytochalasin family, cytochalasin C and D, similarly induced release of superoxide anions, whereas cytochalasin A and B had no such effect on leucocytes. Cytochalasin E seemed to have dual effects on leucocytes, namely, (1) inhibition of cytokinesis which is a common effect of the cytochalasin family; and (2) triggering of metabolic changes and degranulation which are characteristics of phagocytotic process.  相似文献   

3.
The role of calcium in regulating the activity of leukocytes to generate and release superoxide was studied by using an intracellular calcium-antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate. The antagonist inhibited the release of superoxide anions induced by a calcium-ionophore A23187 and the inhibition was relieved by the addition of calcium ions. The release induced by cytochalasin D or by the ingestion of bacteria was similarly inhibited by the calcium-antagonist. The result supports the hypothesis that an intracellular translocation of calcium is regulating the phagocytotic metabolic activity of leukocytes. The release of granule enzymes induced by the ionophore was also inhibited by the calcium antagonist.  相似文献   

4.
The effect of modification of maleimide derivatives on superoxide production by guinea-pig neutrophils induced by a variety of different soluble stimuli was studied. Pretreatment of neutrophils by showdomycin, a very slowly penetrating-SH reagent, did not affect superoxide production by all of the stimuli used, suggesting no exposure of sulfhydryl groups involved in superoxide-generating system on the cell surface. Pretreatment with N-ethylmaleimide (MalNEt), a considerably penetrating-SH reagent, markedly inhibited superoxide production stimulated by formyl-methionyl-leucyl-phenylalanine (HCO-Met-Leu-Phe), cytochalasin E or digitonin, but not superoxide production stimulated by the ionophore A23187 or sodium fluoride. The oxygen consumption stimulated by HCO-Met-Leu-Phe or cytochalasin E was inhibited by MalNEt pretreatment, whereas the oxygen consumption stimulated by A23187 was not inhibited by MalNEt. The inhibition by MalNEt of superoxide production did not appear to be due to the interference with binding of the affected stimuli, since MalNEt pretreatment did not inhibit the release of lysozyme, granule enzyme, induced by HCO-Met-Leu-Phe, cytochalasin E or digitonin. Particulate fractions from MalNEt-pretreated neutrophils before exposure to the stimulus exhibited the inhibition of the enhancement of NADPH-dependent superoxide production induced by HCO-Met-Leu-Phe, cytochalasin E or digitonin, but not A23187, whereas treatment of neutrophils with MalNEt after activation by these stimuli had no effect on the NADPH oxidase activity in particulate fractions. Direct exposure of particulate fractions from A23187-stimulated neutrophils to MalNEt showed no actual susceptibility of NADPH oxidase to MalNEt inhibition. These findings suggest that the inhibitory effect of MalNEt is caused by the modification of the process of the activation by the affected stimuli of the superoxide system, probably NADPH oxidase and that at least two mechanisms exist for activation of superoxide-generating system in guinea-pig neutrophils on the basis of the susceptibility to MalNEt inhibition.  相似文献   

5.
Treatment of macrophages with cytochalasin E in combination with a lectin was found to stimulate the generation of superoxide anions (O2-) very efficiently. The macrophages stimulated with concanavalin A, phytohemagglutinin or wheat germ agglutinin released superoxide, but cells pretreated with cytochalasin E released much greater amounts of superoxide, without notable lag time, upon stimulation with the lectin. Wheat germ agglutinin was found to be the most efficient stimulant among the lectins tested. Superoxide generation in guinea pig macrophages was shown to be dependent largely on cytoplasmic glucose metabolism and to some extent on mitochondrial respiration, since the superoxide release was largely but not totally inhibited by 2-deoxyglucose and to a lesser extent by antimycin A or KCN. The method presented is sensitive and allows rapid assay of the superoxide-generating activity with only 1–5 × 105 macrophages for a single determination. In application of this technique, elevation of the superoxide-generating activity was shown with macrophages elicited by chemical inflammation or those obtained from mice after treatment with tubercle bacilli.  相似文献   

6.
All of the common cytochalasins activate superoxide anion release and exocytosis of beta-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 0.2 microM cytochalasin A, C greater than 2 microM cytochalasin B greater than or equal to 4-5 microM cytochalasin D, E. While maximal rates of O2- release and extents of exocytosis require extracellular calcium (1-2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibit either cytochalasin B- or E-stimulated O2- production with IC50 values of 5-10 mM and inhibition occurs whether Cl-, NO3- or SCN- is the anion added with Na+ or K+. Release of beta-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl(IC50 approximately 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of beta-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2- or beta-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

7.
Guinea pig polymorphonuclear leucocytes reduced cytochrome c when treated with cytochalasin E. The reduction was completely inhibited by superoxide dismutase and manganese ions, which indicates that superoxide anions are generated and released into the outside medium by the treatment. The reduction was inhibited by glycolytic inhibitors and cyclic AMP but not by cyclic GMP. The pattern is similar to the cyanide-insensitive respiration of leucocytes during phagocytosis. Nitroblue tetrazolium was also reduced by the leucocytes treated with the cytochalasin, which was inhibited by manganese ions, glycolytic inhibitors and cyclic AMP but was only partially inhibited by superoxide dismutase.  相似文献   

8.
The superoxide release of guinea pig exudate leukocytes induced by phagocytosis or by stimulation with cytochalasin D, digitonin or calcium ionophore A23187 was completely inhibited by the inhibitors of calmodulin-stimulated processes such as trifluoperazine at 10 μM. A particulate NADPH-dependent superoxide-forming enzyme from the cytochalasin D-stimulated cells was also inhibited by the inhibitors and by EGTA. The activation of heart phosphodiesterase by a boiled extract of the cells which was dependent on calcium ions and abolished by trifluoperazine was observed. These results suggest the presence of calmodulin in leukocytes and its possible role in the stimulation of the superoxide formation.  相似文献   

9.
The extent of the cyanide-resistent oxidative burst of polymorpho-nuclear leukocytes after stimulation with cytochalasin E was shown to depend markedly on the osmolarity of the cell-suspension medium. With granulocyte concentrations up to 2 X 10(6) cells/ml, optimal oxygen consumption and releases of H2O2 and superoxide anions were reached at 180 mOsmol and 2 X 10(-5) M cytochalasin E. After removal of unbound activator, the cellular oxidative activity remained unaltered and continued to depend on the used osmotic conditions. It is proposed that binding of cytochalasin to the plasma membrane induces an irreversible activation of the oxidative system, whereas the resulting metabolic activity depends on conformational changes in the plasma membrane.  相似文献   

10.
Incubation of human neutrophils with cytochalasin E at ≥ 0.30 μM for 10 minutes diminishes the latency period for superoxide release by these cells upon subsequent stimulation with phorbol-12-myristate-13-acetate. Treatment of neutrophils with cytochalasin E at ≥ 2.5μM virtually eliminates this latency period under the circumstances of our assay. The utility of this compound for studies concerning the sequence of the biochemical events that occur during stimulation of neutrophils is intimated.  相似文献   

11.
The relationship between phagocytosis and bactericidal action of polymorphonuclear leukocytes was examined by comparing the functions of cytochalasin D-treated leukocytes with those of the control. Measurement of phagocytotic and bacterial DNA-degrading activities using Escherichia coli prelabeled with [3H]thymidine revealed that phagocytosis and bacterial DNA degradation were inhibited by treatment with cytochalasin D to about 50 and 10% of the control, respectively. Nevertheless, the bactericidal activity of the cytochalasin D-treated leukocytes was almost the same as that of the control leukocytes; almost all the bacteria were phagocytized by the latter leukocytes. Under the same experimental conditions, the production and release of superoxide anions and hydrogen peroxide, which are both known to be involved in the bactericidal action of the leukocytes, were markedly increased by cytochalasin D. Release of several lysosomal hydrolases was also increased markedly by cytochalasin D treatment, except for myeloperoxidase. However, lactate dehydrogenase, a typical cytosolic marker, was not released by the same treatment. Thus, it is unlikely that the increase in the release of the above-mentioned bactericidal factors was due to decomposition of the leukocytes. These results indicate that the site of bactericidal action of cytochalasin D-treated leukocytes is not necessarily intracellular but may be around the external surface of the cells.  相似文献   

12.
The effect of various soluble stimuli on the superoxide production by guinea pig eosinophils was studied in comparison to neutrophils. Phorbol myristate acetate, A23187, digitonin, NaF, concanavalin A (Con A), and cytochalasin E stimulated eosinophils and neutrophils to release O2-. The O2- production by these active agents, excluding Con A and cytochalasin E, was much greater in eosinophils than in neutrophils. Formyl-Met-Leu-Phe stimulated the O2- production in neutrophils but not in eosinophils. Neither histamine nor Val/Ala-Gly-Ser-Glu stimulated the O2- production in both types of leukocytes. A23187- or Con A-stimulated O2- production was greatly enhanced by cytochalasin B pretreatment in neutrophils but not in eosinophils. Lineweaver-Burk analysis of NADPH oxidase in particulate fractions showed that eosinophils possessed the same Km values as neutrophils and greater Vmax values than neutrophils, suggesting that eosinophils have a similar, but more active, O2- -generating enzyme system than neutrophils.  相似文献   

13.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

14.
Zymosan and phorbol ester induced in liver macrophages the release of arachidonic acid, prostaglandin E2, and superoxide; the calcium ionophore A 23187 elicited a release of arachidonic acid and prostaglandin E2 but not of superoxide, and exogenously added arachidonic acid led to the formation of prostaglandin E2 only. The zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide was dose-dependently inhibited by staurosporine and K252a, two inhibitors of protein kinase C, and by pretreatment of the cells with phorbol ester which desensitized protein kinase C. The release of arachidonic acid or prostaglandin E2 following the addition of A 23187 or arachidonic acid was not affected by these treatments. Zymosan and phorbol ester but not A 23187 or arachidonic acid induced a translocation of protein kinase C from the cytosol to membranes in intact cells. These results demonstrate an involvement of protein kinase C in the zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide; the release of arachidonic acid and prostaglandin E2 elicited by A 23187 and the formation of prostaglandin E2 from exogenously added arachidonic acid, however, is independent of an activation of protein kinase C.  相似文献   

15.
Pretreatment of human granulocytes with cytochalasin B before addition of opsonized zymosan particles resulted in strong inhibition of the oxygen consumption, the hydrogen peroxide production, and the hexose monophosphate shunt activity as compared to normal phagocytosing cells. In contrast, however, no effect of cytochalasin B was found on the generation of superoxide anions. These seemingly controversial results can be explained by the action of cytochalasin B on the cell membrane.  相似文献   

16.
Release and subcellular fractionation experiments indicate that fusion of a novel tertiary granule with the plasma membrane is concomitant with human neutrophil activation. Phorbol 12-myristate 13-acetate (PMA) induced a respiratory burst in human neutrophils as well as a high release of gelatinase, a marker of the tertiary granule. Preincubation of neutrophils with cytochalasin E induced a partially activated or 'primed' state, in which cells were unable to generate superoxide anion, but showed a reduced latency period for this activity. Fusion of tertiary granules with the cell surface also occurred during priming, although to a lesser extent than in PMA stimulation. The rapid tertiary granule degranulation, preceding that of specifics and azurophilics, seems to play an important role in the functionality and secretory properties of human neutrophils.  相似文献   

17.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

18.
A fluorescent probe chlortetracycline was used to monitor the mobilization of intracellular divalent cations of leukocytes. When the chlortetracycline-loaded cells were stimulated with cytochalasin D or E. coli, a fluorescence change ascribable to the release of calcium from the intracellular hydrophobic environment was observed. The dose-response curve of the fluorescence change and that of the superoxide release of the cells were very similar. An intracellular calcium antagonist 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate inhibited both metabolic and fluorescence changes in parallel. A supposition that an intracellular mobilization of calcium ions is stimulating the metabolic change was supported.  相似文献   

19.
The objective of this study was to determine whether Kupffer cells contribute to parenchymal and endothelial cell damage induced by ischemia-reperfusion in perfused rat livers. Parenchymal and endothelial cell injury were determined by measuring activities of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), respectively, in the effluent perfusate of livers subjected to 60 min of low flow ischemia followed by 30 min of reperfusion. Upon reperfusion, LDH and PNP activities increased significantly within the first 10 min of reperfusion and remained elevated over control values throughout the duration of reperfusion. Pretreatment with gadolinium chloride, an inhibitor of Kupffer cell function, significantly decreased LDH and PNP efflux during reperfusion by approximately 60% and 50%, respectively. When Kupffer cells were stimulated by vitamin A pretreatment, PNP efflux was doubled during reperfusion. Vitamin E pretreatment attenuated LDH and PNP release by approximately 70% during reperfusion compared to enzyme release in untreated livers. Moreover, the water-soluble antioxidants superoxide dismutase and desferrioxamine reduced reperfusion injury, whereas catalase had no effect on enzyme release. These results demonstrate that superoxide anions released from Kupffer cells are involved in oxidative damage to endothelial cells as well as hepatocytes during the early stages of hepatic reperfusion.  相似文献   

20.
Cytochalasins enhanced surfactant secretion from primary cultures of [3H]choline-labeled type II epithelial cells from the rat. Cytochalasins A, B, C, D and dihydrocytochalasin B enhanced secretion of phosphatidyl-[3H]choline ([3H]PC) in a dose-dependent manner with EC50 values of 1, 2, 0.5, 0.1 and 1 μM for cytochalasins A, B, C, D and dihydrocytochalasin B, respectively. Only cytochalasin A caused significant cytotoxicity as determined by release of the intracellular enzyme lactate dehydrogenase (EC 1.1.1.17). Dose responses of surfactant release induced by cytochalasins B, C and D were biphasic; maximal release was observed between 0.1–1.0 μM for cytochalasins C and D between 1 and 10 μM for cytochalasin B. Secretion decreased toward control levels at concentrations of cytochalasin above these maximal concentrations. Increased rates of [3H]PC release were noted between 1 and 3 h after exposure to cytochalasin D. Increased rates of surfactant release induced by cytochalasin D were additive to release induced by the β-adrenergic agonist, terbutaline, or forskolin, although cytochalasin D had no direct effect on cytosolic cyclic AMP levels. Changes in cell shape and microfilament organization were observed by phase-contrast microscopy and fluorescence microscopy using rhodamine-conjugated phalloidin after exposure of the isolated type II cells to cytochalasin D. Disruption of microfilaments associated with lamellar bodies of the purified type II cells occurred after treatment with cytochalasin D. Cytochalasin D augmented surfactant release from purified type II cells and disrupted the microfilament structure of those cells, supporting the hypothesis that alterations in microfilaments are associated with surfactant release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号