首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Morphometric data from scanning electron micrographs (SEM) of cells in intact embryos and high-resolution time-lapse recordings of cell behavior in cultured explants were used to analyze the cellular events underlying the morphogenesis of the notochord during gastrulation and neurulation of Xenopus laevis. The notochord becomes longer, narrower, and thicker as it changes its shape and arrangement and as more cells are added at the posterior end. The events of notochord development fall into three phases. In the first phase, occurring in the late gastrula, the cells of the notochord become distinct from those of the somitic mesoderm on either side. Boundaries form between the two tissues, as motile activity at the boundary is replaced by stabilizing lamelliform protrusions in the plane of the boundary. In the second phase, spanning the late gastrula and early neurula, cell intercalation causes the notochord to narrow, thicken, and lengthen. Its cells elongate and align mediolaterally as they rearrange. Both protrusive activity and its effectiveness are biased: the anterioposterior (AP) margins of the cells advance and retract but produce much less translocation than the more active left and right ends. The cell surfaces composing the lateral boundaries of the notochord remain inactive. In the last phase, lasting from the mid- to late neurula stage, the increasingly flattened cells spread at all their interior margins, transforming the notochord into a cylindrical structure resembling a stack of pizza slices. The notochord is also lengthened by the addition of cells to its posterior end from the circumblastoporal ring of mesoderm. Our results show that directional cell movements underlie cell intercalation and raise specific questions about the cell polarity, contact behavior, and mechanics underlying these movements. They also demonstrate that the notochord is built by several distinct but carefully coordinated processes, each working within a well-defined geometric and mechanical environment.  相似文献   

3.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   

4.
5.
6.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

7.
The ability of an inositol phospho-oligosaccharide (POS) to mimic the mitogenic effects of nerve growth factor (NGF) and insulin on the early development of the inner ear was investigated. POS (10 microM) stimulated the incorporation of [3H]thymidine into the cochleovestibular ganglion by 3.9-fold. NGF (50 ng/ml) stimulation was 4.7-fold. POS and NGF showed no additivity. Cells induced to proliferate by POS overlapped with those expressing NGF receptors. POS, like insulin, potentiated the mitogenic effect of bombesin on the otic vesicle epithelium. DNA synthesis in the presence of bombesin (100 nM) plus POS (10 microM) was increased by 6.4-fold. POS stimulation was not additive with insulin. The results suggest that POS may play a role in growth factor regulation of cell proliferation during embryonic development.  相似文献   

8.
Xenopus embryos at various development stages were incubated in the presence of labelled substrates and the 14CO2 production determined. From the rates of oxidation of glucose labelled in positions 1 and 6 and from that of radioactive acetate, pyruvate and glutamate, it was concluded that the Embden-Meyerhof pathway and the Krebs cycle are functional during early embryogenesis, but that their relative participation in the metabolic processes is limited and increases from gastrulation onwards. Early development is characterized by the predominance of the pentose cycle and the glutamate-aspartate cycle. Furthermore, it was shown that glutamate may be the main energy source up to gastrulation.  相似文献   

9.
Transforming growth factor-beta1-stimulated clone 22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved. During mouse embryogenesis, TSC-22 is expressed at the site of epithelial-mesenchymal interaction. Here, we isolated Xenopus laevis TSC-22 (XTSC-22) and analyzed its function in early development. XTSC-22 mRNA was first detected in the ectoderm of late blastulae. Translational knockdown using XTSC-22 antisense morpholino oligonucleotides (XTSC-22-MO) caused a severe delay in blastopore closure in gastrulating embryos. This was not due to mesoderm induction or convergent-extension, as confirmed by whole-mount in situ hybridization and animal cap assay. Cell lineage tracing revealed that migration of ectoderm cells toward blastopore was disrupted in XTSC-22-depleted embryos, and these embryos had a marked increase in the number of dividing cells. In contrast, cell division was suppressed in XTSC-22 mRNA-injected embryos. Co-injection of XTSC-22-MO and mRNA encoding p27Xic1, which inhibits cell cycle promotion by binding cyclin/Cdk complexes, reversed aberrant cell division. This was accompanied by rescue of the delay in blastopore closure and cell migration. These results indicate that XTSC-22 is required for cell movement during gastrulation though cell cycle regulation.  相似文献   

10.
The N-myc proto-oncogene is expressed in a wide range of tissues during mammalian embryogenesis. This observation, along with the oncogenic capacity of this gene, has led to the suggestion that N-myc plays an important role in early development. However, due to the complexity of the expression pattern and the difficulty of manipulating mammalian embryos, little progress has been made towards understanding the developmental function of this gene. To enable a more detailed analysis of the role of this gene in early development, a study of the Xenopus homologue of N-myc was undertaken. Xenopus N-myc cDNA clones were isolated from a neurula library using a murine N-myc probe. Analysis of the timing of expression of N-myc mRNA and of the distribution of N-myc protein during Xenopus development indicate that this gene may be playing an important role in the formation of a number of embryonic structures, including the nervous system. N-myc is initially expressed as a maternal RNA, but this mRNA is degraded by the gastrula stage of development. Zygotic expression does not commence until late neurula. Examination of the distribution of the N-myc protein by whole-mount immunohistochemistry indicates that the early embryonic expression occurs in the central nervous system, the neural crest, the somites and the epidermis. Later expression is mostly within the head and somites. Specific structures within the head that express the protein include the eye, otic vesicle, fore and hindbrain and a number of cranial nerves. The results demonstrate that while N-myc is expressed in the developing nervous system of Xenopus, the timing of expression indicates that it is unlikely to be involved in regulation of the very first stages of neurogenesis.  相似文献   

11.
12.
13.
14.
R Stick  P Hausen 《Cell》1985,41(1):191-200
  相似文献   

15.
Extracts of large oocytes of Xenopus laevis contain high levels of one major DNA polymerase activity. After maturation into eggs, the overall level of DNA polymerase activity in extracts increases fourfold and a second major activity appears on Sephadex G-200 or DEAE cellulose columns. Although intense DNA synthesis occurs as the number of cells increase from one to over 100,000, no further increases in the level of either DNA polymerase activity are observed in cleavage, gastrula or early neurula stage embryos. In extracts of late neurulae or hatched embryos, however, a third major DNA polymerase activity appears coincident with an increase in the ability of the extracts to utilise native DNA templates in vitro.  相似文献   

16.
Members of the transforming growth factor-beta (TGF-beta) superfamily play various roles during development in both vertebrates and invertebrates. Two isoforms, TGF-beta2 and -beta5, have been isolated from Xenopus laevis. We describe here the localization of TGF-beta5 mRNA in early embryos of X. laevis, assessed by whole-mount in situ hybridization. The first detectable expression of TGF-beta5 was seen in the stage 14 embryo at the posterior tip of notochord, which continued to later stages, accompanied by the expression in bilateral regions of posterior wall in the tail region next to the notochord. At later stages, transient expression was seen in the cement gland (around stage 21) and in the somites (stages 24-27). In addition, expression was present in the branchial arches (stage 29-36) and olfactory placodes (stage 36).  相似文献   

17.
We have isolated the Xenopus homologue of Muscle LIM protein (MLP, CRP3) and examined its expression during early embryonic development. MLP is only expressed in the differentiated heart during early development and is expressed in a subset of other striated muscles during later stages. There is no MLP expression during primary myogenesis in the somites, although it is found in adult skeletal muscle.  相似文献   

18.
F Tchang  S Vriz  M Méchali 《FEBS letters》1991,291(2):177-180
The remarkable stability of c-myc during oogenesis contrasts with its degradation during the early developmental period in Xenopus laevis. Three evolutionary conserved motifs found in the 3'-untranslated region of Xenopus c-myc RNAs have been analyzed for a possible role in c-myc RNA degradation. No specific degradation was observed when these sequences were cloned downstream of a reporter gene and the corresponding RNAs were injected into fertilized eggs. The relation between polyadenylation and degradation of c-myc mRNA has been examined during early development. c-myc is adenylated during early oogenesis, and a dramatic de-adenylation occurs in full grown oocytes. Consequently, the de-adenylation of c-myc mRNA that occurs in eggs might be a requirement for its degradation after fertilization, but is not sufficient to trigger its degradation.  相似文献   

19.
20.
The ability to synthesize a 68,000- to 70,000-Da protein (hsp) in heat-shocked early Xenopus laevis embryos is dependent on the stage of development. Whereas late blastula and later stage embryos synthesize hsp68-70 after heat shock, cleavage stages are incompetent with respect to hsp synthesis. In vitro translation experiments and RNA blot analyses demonstrate that enhanced synthesis of hsp68-70 is associated with an accumulation of hsp68-70 mRNA. Examination of the effect of heat shock on preexisting actin mRNA reveals that heat shock promotes a reduction in the levels of actin mRNA in cleavage embryos but has no discernible effect on actin mRNA levels in neurula embryos. Finally, the acquisition of the heat-shock response (i.e., synthesis of hsp68-70 and accumulation of hsp70 mRNA) during early Xenopus development is correlated with the acquisition of thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号