首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Biosynthesis and stability of the mRNA population in DMSO-induced Friend erythroleukemic cells were studied after labeling the RNA with 3H-uridine and then chasing it with nonlabeled uridine. Globin RNA metabolism was studied by hybridization to excess complementary DNA covalently coupled to oligo(dT)-cellulose. After a labeling period of 120 min, 2–4% of the poly(A)-containing labeled RNA was in globin RNA; it decayed with a half-life of 16–17 hr. The rest of the poly(A)-containing RNA was composed of two kinetic populations: 85–90% decayed with a half-life of about 3 hr, while 10% decayed with a half-life of about 37 hr. The portion of globin RNA in labeled poly(A)-containing RNA behaved in an unexpected fashion during the chase period. During the initial chase period, the percentage of globin RNA increased rapidly, reaching a maximum of about 15% at 20 hr, but if subsequently declined gradually.Based on these findings, a model was built that describes the changes in the proportion of globin mRNA in poly(A)-containing RNA during continuous synthesis and after chase of the labeled RNA. It appears that if the parameters described remain constant during the maturation of erythroblasts, then this model would not account for the almost exclusive presence of globin RNA in the reticulocyte. By far the most effective way to achieve this high level of globin RNA is the destabilization of the mRNA population which is more stable than globin RNA, and not the stabilization of globin RNA itself.  相似文献   

2.
By pretreating simian virus 40-infected BSC-1 cells with glucosamine, [(3)H]uridine labeling of both cellular and viral RNA can be halted instantaneously by addition of cold uridine. We have studied the fate of pulse-labeled viral RNA from cells at 45 h postinfection under these conditions. During a 5-min period of labeling, both the messenger and nonmessenger regions of the late strand were transcribed. After various chase periods, nuclear viral species which sediment at 19, 17.5, and 16S were observed. Nuclear viral RNA decays in a multiphasic manner. Of the material present at the beginning of the chase period, 50% was degraded rapidly with a half-life of 8 min (initial processing). This rapidly degraded material was that fraction of the late strand which did not give rise to stable late mRNA species. Forty percent was transported to the cytoplasm, and 10% remained in the nucleus as material which sedimented in the 2 to 4S region. These 2 to 4S viral RNAs had a half-life of 3 h, and hybridization studies suggest that they are in part coded for by the late-strand nonmessenger region and are derived from the initial nuclear processing step. Another part is coded for by the late-strand messenger region and may be generated by some subsequent nuclear cleavages of 19S RNA into 17.5 and 16S RNAs. Transport of nuclear viral RNA into the cytoplasm was detected after a 5-min pulse and a 7-min chase. The maximum amount of labeled viral RNA was accumulated in the cytoplasm after a 30-min to 1-h chase. At least two viral cytoplasmic species were observed. Kinetic data suggest that 19S RNA is transported directly from the nucleus. Whether cytoplasmic 16S is formed by cleavage of 19S RNA in the cytoplasm is not clear. The half-lives of cytoplasmic 19 and 16S RNAs can be approximated as 2 and 5 h, respectively.  相似文献   

3.
Rous sarcoma virus (RSV)-specific ribonucleic acid (RNA) in virus-producing chicken cells and non-virus-producing rat cells infected with RSV was studied by hybridization with the endogenous deoxyribonucleic acid (DNA) product of the RSV virion DNA polymerase system. By hybridizing the total DNA product with excess virion RNA, the product DNA was separated into hybridized (“minus”) and nonhybridized (“plus”) DNA. The “minus” DNA was complementary to at least 20% of the RNA from RSV which remained of high molecular weight after denaturation. A maximum of approximately 65% hybridization was observed between “minus” DNA and RSV RNA or RSV-infected chicken cell RNA. A maximum of about 60% hybridization was observed between “minus” DNA and RSV-infected rat cell RNA. RSV-infected chicken cells contained RSV-specific RNA equivalent to about 6,000 virions per cell. RSV-infected rat cells contained RSV-specific RNA equivalent to approximately 400 virions per cell. Neither cell type contained detectable RNA complementary to virion RNA. The RSV-specific RNA in RSV-infected rat cells did not appear to be qualitatively different from that in RSV-infected chicken cells.  相似文献   

4.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   

5.
The size of pulse-labeled globin messenger RNA nucleotide sequences was investigated, to determine whether newly transcribed globin mRNA molecules are larger than steady-state globin mRNA. Molecular hybridization techniques were used to compare directly the sedimentation of steady-state (unlabeled) and pulse-labeled (radioactive) globin mRNA sequences in the same analytical sucrose gradient. In gradients containing 98% formamide, radioactive globin mRNA sequences from mouse fetal liver cells labeled for 15 to 20 minutes with [3H]uridine sediment in a broad band with a peak at approximately 14 S, while steady-state globin mRNA sediments at 10 S. The large radioactive RNA can be recovered from one gradient and recentrifuged in a second gradient, in which it again sediments in a broad band with a peak at 14 S. The large radioactive RNA is cleaved to 10 S during a 75-minute “chase” with either actinomycin D or unlabeled uridine plus cytidine. The estimated half-life of the precursor is 45 minutes or less under these conditions. A covalent RNA precursor larger than 18 S with a similar turnover rate is not observed.  相似文献   

6.
Polyadenylated RNA was isolated from fission yeast (Schizosaccharomyces pombe) total RNA using oligo(dT)-cellulose, and was studied as a model for messenger RNA. The half-life of poly adenylated RNA was measured by two independent methods. (a) The rate of labelling of polyadenylated RNA during incubation of cells with [5-3H]uridine was measured. A half-life of 40-45 min was found by comparing the experimental data with theoretical curves calculated for labelling of RNAs with various half-lives. The influence of precursor-pool specific activity on RNA labelling kinetics is considered. (b) Cells were labelled with [5-3H]uridine then further RNA synthesis was inhibited by addition of 8-hydroxyquinoline. The rate of loos of radioactivity from polyadenylated RNA indicated a half-life of 50 min. The half-life found by these two methods is about one-third of the cell doubling time, and is much longer than previous estimates by indirect methods of yeast messenger RNA half-life. Both experimental methods provided evidence for the existence of tas a half-life of 40-50 min; a much smaller population is probably turning over more rapidly. After inhibition of RNA synthesis by 8-hydroxyquinoline, the rate of total protein synthesis declined much more rapidly than the polyadenylated RNA content of the cells. However, 60 min after inhibition of RNA synthesis there was a small rise in the rate of portein synthesis. These data are interpreted as evidence for mechanisms controlling protein synthesis which operate at the level of messenger RNA translation.  相似文献   

7.
This paper describes experiments in which the half-lives of a number of cytoplasmic RNA species have been estimated in a mouse myeloma (MOPC 21) without resort to metabolic inhibitors. Partial purification of the messenger RNA coding for immunoglobulin light chains enabled an estimate of the stability of this species to be made. The procedure chosen was that of a conventional pulse-chase following uniform labelling of cells with [3H]uridine. Centrifugation of the uniformly labelled cells and resuspension in 0·1 mm-uridine resulted in a 75% drop in the specific activity of the UTP pool within 2 hours, followed by a logarithmic decay with a half-life of about 3·5 hours. Exposure of P3K cells to uridine causes them to swell appreciably and centrifugation at the end of the pulse period is followed by a lag phase of 3 hours before the cells re-enter logarithmic growth. Since all chase conditions had certain disadvantages, a comparison of experiments using different chase conditions was undertaken. The stability of the various RNA species did not vary greatly under the different chase conditions. The half-life of the light-chain mRNA is estimated to be 12 to 14 hours, although a value in the range of 5 to 20 hours cannot be excluded. An RNA fraction including the heavy-chain mRNA behaves similarly. Half-lives determined for other RNA species were: 18 S ribosomal RNA (40 to 60 h); 12 S mitochondrial ribosomal RNA (28 to 32 h). Poly(A)-containing RNA from free polyribosomes decays rapidly in the first 5 hours with a half-life of 20 to 30 hours, subsequently.  相似文献   

8.
The labeling pattern of non poly(A) associated (poly(A)) RNA of rabbit cerebral cortex was studied 24 hr after a single electroconvulsive shock (ECS). The animals were injected subarachnoidally with [3H]uridine and sacrificed 1 hr later. The fractionation pattern of labeled nuclear poly(A) RNA in the cerebral cortex of ECS treated animals was identical to that of the controls. However, microsomal poly(A) RNA from the treated animals showed an increased labeling of 18S ribosomal RNA. Also 28S RNA displayed a higher labeling but the effect was not statistically significant. These results indicate a more efficient production of ribosomal RNA in the late post-ECS period which might be in relationship with an increased activity of brain protein synthesis machinery.  相似文献   

9.
A. G. Jessamine  E. J. Hamilton  L. Eidus 《CMAJ》1963,89(24):1214-1217
The rate of inactivation of isoniazid (INH) in a host organism varies widely, probably because of genetic factors. A simple chemical test was used to determine INH levels in 24 tuberculous patients three and six hours after oral administration of the drug. Results are expressed in terms of half-life values of free INH in the body. Seven of the 24 patients inactivated INH rapidly (half-life average: 64 minutes); the remaining 17 metabolized INH at a slower rate (half-life average: 186 minutes). The range of individual half-life values was 30 to 305 minutes. A provisional half-life limit of 110 minutes was used to define “fast inactivators”; 110-160 minutes, “mod̃erate inactivators”; and over 160 minutes, “slow inactivators”. Although INH inactivation may not be directly related to therapeutic failure, the security margin of the treatment may be diminished in those patients who inactivate INH rapidly.  相似文献   

10.
1. The incorporation of [2-(14)C]uridine into nucleic acids of bone cells was studied in rat and pig trabecular-bone fragments surviving in vitro. 2. The rapid uptake of uridine into trichloroacetic acid-soluble material, and its subsequent incorporation into a crude nucleic acid fraction of bone or purified RNA extracted from isolated bone cells, was proportional to uridine concentration in the incubation medium over a range 0.5-20.0mum. 3. During continued exposure to radioactive uridine, bulk RNA became labelled in a curvilinear fashion. Radioactivity rapidly entered nuclear RNA, which approached its maximum specific activity by 2hr. of incubation; cytoplasmic RNA, and particularly microsomal RNA, was more slowly labelled. The kinetics of labelling and rapid decline of the nuclear/microsomal specific activity ratio were consistent with a precursor-product relationship. 4. Bulk RNA preparations were resolved by zonal centrifugation in sucrose density gradients into components with approximate sedimentation coefficients 28s, 18s and 4s. 5. Rapidly labelled RNA, predominantly nuclear in location, demonstrated a polydisperse sedimentation pattern that did not conform to the major types of stable cellular RNA. Material of highest specific activity, sedimenting in the 4-18s region and insoluble in 10% (w/v) sodium chloride, rapidly achieved its maximum activity during continued exposure to radioactive precursor and decayed equally rapidly during ;chase' incubation, exhibiting an average half-life of 4.3hr. 6. Ribosomal 28s and 18s RNA were of lower specific activity, which increased linearly for at least 6hr. in the continued presence of radioactive uridine. There was persistent but variable incorporation into ribosomal RNA during ;chase' incubation despite rapid decline in total radioactivity of the acid-soluble pool containing RNA precursors.  相似文献   

11.
The ribonucleic acid synthesized by excised shoots of dwarf pea (Pisum sativum L. cv. Progress No. 9) during short labeling periods has been characterized. Thirty percent of the total (32)P(i) incorporated in 1 hour is found in the ribosomal fraction. This labeled RNA was polydisperse (6-18 Svedberg units) and after chromatography on a methylated albumin-kieselguhr column about 80% of the radioactivity appeared in two peaks. One of these appeared on the shoulder of heavy ribosomal RNA ("mRNA") while the other was tenaciously bound to the column (TB-RNA). In the presence of high NaCl concentration, about half of the polydisperse RNA interacted with ribosomal RNA and eluted as "mRNA" while the remainder eluted as TB-RNA. This interaction in the presence of salt seems to result in the alteration of secondary structure because the "mRNA" fraction had a high sedimentation coefficient (45-50 Svedberg units). The polydisperse RNA approaches DNA in low cytidylate and guanylate content. After short periods of labeling TB-RNA showed higher adenylate content than "mRNA." The radioactivity from the "mRNA" peak can be chased, and these counts may represent a class of shortlived messenger RNA molecules with an average half-life of 10 to 15 minutes. The other component, TB-RNA, could not be chased and accumulated radioactivity during the chase period.  相似文献   

12.
The stability of rapidly labelled hybridizable messenger RNA in both exponential and post-exponential phase cells of Bacillus amyloliquefaciens was measured in terms of the rate of loss of its radioactivity. In the exponential phase, where 96% of the mRNA was specific for cell proteins and only 4% was exoprotein mRNA, the label was lost exponentially from the rapidly labelled hybridizable mRNA fraction with a half-life of six minutes at 30 °C. The antibiotic rifampicin, at a concentration of 10 μg/ml, had no effect on the characteristics of decay of this exponential-phase mRNA. In the post-exponential phase, where there were equal amounts of cell protein and exoprotein-specific mRNA, rapidly labelled hybridizable mRNA decayed exponentially in the presence of rifampicin (10 μg/ml), with a half-life of six minutes at 30 °C. In the absence of rifampicin the characteristics of decay were more complex. The evidence available suggested that this was due to the superimposition of a component attributable to reincorporation of degradation products of radioactive RNA on the characteristic exponential decay pattern of the post-exponential mRNA.Measurement of the stability of active mRNA, by studying the loss of ability to incorporate l-[14C]leucine into protein in the presence of rifampicin (10 μg/ml), gave half-lives of 4.5 minutes and six minutes, respectively, for exponential and post-exponential material.  相似文献   

13.
Mahon JD  Canvin DT 《Plant physiology》1969,44(12):1701-1705
The Marquillo × Kenya Farmer 1 “grass-clump” dwarf selection of Triticum aestivum L. was grown under continuous 2000 foot candle light and several regimes of alternating 16° and 26° temperatures combined in total cycle lengths of 6, 12, 24, or 48 hr. Plants at 26° grew as normal wheat. Those exposed to 0.25 to 2 hr of 16° per cycle showed typical “grass-clump” dwarf characteristics which were independent of the cycle length. Treatments with 16° exposures of 4 to 8 hr per 24 hr and 12 to 16 hr per 48 hr exhibited vegetative “grass-clump” dwarfness for 40 days but later displayed extensive reproductive development. Longer 16° treatments killed the plants at a very early stage of vegetative development before floral initiation. The data supported an hypothesis that all 4 growth habits were related to the temperature sensitivity of the vegetative meristem. The cessation of meristem development was possibly due to the accumulation of a stable inhibitory substance produced at low temperatures.  相似文献   

14.
15.
The in vitro incorporation of tritiated uridine into RNA by the spermatogenic cells of the rat has been analyzed by high-resolution autoradiography. Special attention has been focused on the unique cytoplasmic organelle, the chromatoid body. After a short labeling time (2 h), this organelle remains unlabeled in the vast majority of the early spermatids although the nuclei are labeled. When the 2-h incubation with (3H)uridine is followed by a 14-h chase, the chromatoid body is seen distinctly labeled in all spermatids during early spermiogenesis from step 1 to step 8. Very few grains are seen elsewhere in the cytoplasm of these cells. When RNA synthesis in the spermatid ceases, the chromatoid body also remains unlabeled. It is likely that the chromatoid body contains RNA which is synthesized in the nuclei of the spermatids. The function of this RNA as a stable messenger RNA needed for the regulation of late spermiogenesis is discussed.  相似文献   

16.
Fate of adenovirus type 12 genomes in nonpermissive cells   总被引:6,自引:6,他引:0       下载免费PDF全文
The fate of 3H-thymidine-labeled adenovirus type 12 deoxyribonucleic acid (DNA) was studied in Nil-2 cells of Syrian hamster origin. It was found that a substantial fraction of 3H-adenovirus type 12 DNA became degraded within 24 hr after infection and was released into the culture fluid. After infection of 5-bromodeoxyuridine (BUdR)-prelabeled cells with 3H-adenovirus type 12, viral DNA became readily separable from cellular DNA by equilibrium centrifugation in CsCl. Part of the viral radioactivity was found to shift gradually to the position of cellular DNA as time progressed after infection. When exponentially growing cells were exposed simultaneously to BUdR, 5-fluorodeoxyuridine, and 3H-adenovirus type 12, up to 50% of the viral radioactivity shifted within 24 hr from the density of viral DNA to that of cellular DNA after equilibrium centrifugation in CsCl. Upon denaturation of the cellular DNA, the isotope was preferentially found to be associated with the “heavy” strand which was synthesized after infection. Upon hybridization of the “heavy” and the “light” strands with sonically treated, denatured 3H-adenovirus type 12 DNA, small and nearly equal amounts of counts hybridized with both strands. The number of counts annealed was in a range similar to that of those annealed with the same amount of DNA derived from adenovirus type 12-transformed hamster cells. These results demonstrate that (i) a substantial proportion of the adsorbed virus becomes degraded within 24 hr; (ii) part of the degradation products is reutilized for cellular DNA synthesis; (iii) only a small fraction, mainly fragments, of viral DNA becomes integrated into both the newly synthesized and the parental strands of cellular DNA.  相似文献   

17.
Preformed Messenger RNAs and Early Wheat Embryo Germination   总被引:4,自引:2,他引:2       下载免费PDF全文
Wheat (Triticum aestivum L.) embryo homogenates have been fractionated into three cell fractions from which RNA was extracted and assayed for mRNA content by in vitro translation and by [3H]polyuridylic acid hybridization. In dry embryos the preformed mRNAs are distributed equally between a rapidly sedimenting “pellet” fraction and a cytoplasmic “ribosomal/subribosomal” fraction. During germination 25 to 40% of the total mRNA becomes polyribosomal. The remaining 60 to 75% is retained in the pellet and ribosomal/subribosomal fractions.  相似文献   

18.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

19.
Seminiferous tubules in mammals have histological arrangements defined by the associations between somatic cells and germ cells. The processes of DNA synthesis in meiotic and mitotic cells have different features that are not easily distinguishable through morphological means. In order to characterize the pre-meiotic S phase, 5-bromo-2’-deoxyuridine (BrdU) was injected intraperitoneally into Wistar rats, which were sacrificed 30 min, 2 hr, and 24 hr after injection. We found three different labeling patterns. One of these patterns was characterized by a distribution of the label in the form of speckles, most of which were associated with the nuclear envelope (labeling type I). We suggest that this pattern is due to mitotic DNA synthesis of type B spermatogonia. Labeling type II consisted of labeled foci scattered throughout the nuclear volume, which can be correlated with preleptotenic cells in pre-meiotic DNA synthesis. After 24 hr of incorporation, a third type of labeling, characterized by large speckles, was found to be related to cells in the “bouquet” stage; that is, cells in transition between the leptotene and zygotene phases. Our results indicate that BrdU incorporation induces different labeling patterns in the mitotic and pre-meiotic S phases and thus makes it possible to identify somatic and germinal cells.  相似文献   

20.
The amount of simian virus 40 (SV40) DNA present in various SV40-transformed mouse cell lines and “revertants” isolated from them was determined. The number of viral DNA copies in the different cell lines ranged from 1.35 to 8.75 copies per diploid quantity of mouse cell DNA and from 2.2 to 14 copies per cell. The revertants had the same number of viral DNA copies per diploid quantity of mouse cell DNA as their parental cell lines. (However, they showed an increased number of viral DNA copies per cell due to their increased amount of DNA.) By using separated strands of SV40 DNA, the extent of each DNA strand transcribed into stable RNA species was determined for the transformed and “revertant” cell lines. From 30 to 80% of the “early” strand and from 0 to 20% of the “late” strand was present as stable RNA species in the cell lines tested. There was no alteration in the pattern of the stable viral RNA species present in three concanavalin A-selected revertants, whereas in a fluorodeoxyuridine-selected revertant there appeared to be less viral-specific RNA present in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号