共查询到20条相似文献,搜索用时 15 毫秒
1.
Hiroaki Tokimatsu William A. strycharz Albert E. Dahlberg 《Journal of molecular biology》1981,152(2):397-412
Three forms of the 50 S ribosomal subunit of Escherichia coli have been separated by agarose/acrylamide gel electrophoresis. The slowest migrating form, S-50 S, corresponded to native 50 S subunits and contained four copies of proteins . Removal of the four copies of this protein produced a more rapidly migrating form, M-50 S. The M-50 S form was then converted to the fastest migrating form, F-50 S, by removal of additional proteins, including L10 and L11. A one-step removal of a pentameric complex of four copies of plus L10 converted the S-50 S subunit directly to the F-50 S subunit. These proteins recombined specifically with the appropriate protein-deficient 50 S subunit at 3 °C to reform the S-50 S subunit, i.e. the M-50 S subunit was converted back to the S-50 S form by the addition of purified proteins ; and the F-50 S subunit bound the pentameric complex of and L10 to form S-50 S. The binding of the pentameric complex, isolated by glycerol gradient centrifugation, supports the model that all four copies of proteins are together in one part of the ribosome called the “ stalk”. Only the four copies of were removed from the 50 S subunit in low salt (0.125 m-NH4Cl) plus 50% ethanol at 0 °C. These ribosomes (in the M-50 S form) had less than 5% of the peptide-synthesizing activity of untreated control ribosomes as measured by a poly(U) translation system in vitro. Peptide-synthesizing activity was restored, upon addition of , back to the treated ribosomes to give 50 S subunits (S-50 S) with a full complement of four copies of . Antibody to proteins bound only to the S-50 S subunits, producing four new bands separated by gel electrophoresis. The bands represented complexes of one, two, three and four antibodies bound to a 50 S subunit. This result was obtained using either 50 S subunits or 70 S tight couples and indicated that all four copies of are either located at a single site in the stalk or, much less likely, are divided between two symmetrical sites. Proteins were not only accessible to their specific antibody but could also be removed from 70 S ribosomes and polyribosomes without causing their dissociation into subunits. The ribosomes and polyribosomes had an increased gel electrophoretic mobility which was reversed by addition of proteins . 相似文献
2.
Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 A 总被引:11,自引:0,他引:11
The structure of a C-terminal fragment of the ribosomal protein L7/L12 from Escherichia coli has been refined using crystallographic data to 1.7 A resolution. The R-value is 17.4%. Six residues at the N terminus are too disordered in the structure to be localized. These residues are probably part of a hinge in the complete L7/L12 molecule. The possibility that a 2-fold crystallographic axis is a molecular 2-fold axis is discussed. A patch of invariant residues on the surface of the dimer is probably involved in functional interactions with elongation factors. 相似文献
3.
Oligonucleotide-directed mutagenesis was used to produce a serine 89 to cysteine 89 substitution in the C-terminal globular domain of Escherichia coli ribosomal protein L7/L12. Cys-89 represented the only cysteine residue in the protein. L7/L12Cys89 was overproduced in E. coli and purified. An allele replacement strain was also constructed. Growth of this strain was indistinguishable from that of wild type. Ribosomes from the allele replacement strain were used to determine the location of the C-terminal domains of L7/L12 by disulfide cross-linking. A new homobifunctional cysteine-specific cross-linking reagent, 1,4-di[3'-(2'-pyridyldithio)-propionamido]butane, and diagonal gel electrophoresis were used to identify ribosomal proteins cross-linked to L7/L12Cys89. A cross-link between L7/L12 and the single cysteine in L10 was found, in addition to L7/L12 dimers. The L7/L12Cys89-L10 cross-link locates the C-terminal domain of at least one L7/L12 dimer on the body of the large subunit and supports our previous model (Olson, H. M., Sommer, A., Tewari, D. S., Traut, R. R., and Glitz, D. G. (1986) J. Biol. Chem. 261, 6924-6932) that depicts one of the two dimers of L7/L12 on the surface of the body of the 50 S subunit in a bent conformation with the C-terminal domain in close proximity to the N-terminal domain at the base of the stalk. 相似文献
4.
Protein L11 from the 50S ribosomal subunit of Escherichia coli A19 was purified by a method using nondenaturing conditions. Its shape in solution was studied by hydrodynamic and low-angle x-ray scattering experiments. The results from both methods are in good agreement. In buffers similar to the ribosomal reconstitution buffer, the protein is monomeric at concentrations up to 3 mg/mL and has a molecular weight of 16 000-17 000. The protein molecule resembles a prolate ellipsoid with an axial ratio of 5-6:1 a radius of gyration of 34 A, and a maximal length of 150 A. From the low-angle x-ray diffraction data, a more refined model of the protein molecule has been constructed consisting of two ellipsoids joined by their long axes. 相似文献
5.
Ribosomal protein L7/L12 cross-links to proteins in separate regions of the 50 S ribosomal subunit of Escherichia coli 总被引:1,自引:0,他引:1
The 50 S ribosomal subunits from Escherichia coli were modified by reaction with 2-iminothiolane under conditions in which 65 sulfhydryl groups, about 2/protein, were added per subunit. Earlier work showed that protein L7/L12 was modified more extensively than the average but that nearly all 50 S proteins contained sulfhydryl groups. Mild oxidation led to the formation of disulfide protein-protein cross-links. These were fractionated by urea gel electrophoresis and then analyzed by diagonal gel electrophoresis. Cross-linked complexes containing two, three, and possibly four copies of L7/L12 were evident. Cross-links between L7/L12 and other ribosomal proteins were also formed. These proteins were identified as L5, L6, L10, L11, and, in lower yield, L9, L14, and L17. The yields of cross-links to L5, L6, L10, and L11 were comparable to the most abundant cross-links formed. Similar experiments were performed with 70 S ribosomes. Protein L7/L12 in 70 S ribosomes was cross-linked to proteins L6, L10, and L11. The strong L7/L12-L5 cross-link found in 50 S subunits was absent in 70 S ribosomes. No cross-links between 30 S proteins and L7/L12 were observed. 相似文献
6.
J M Carazo T Wagenknecht M Radermacher V Mandiyan M Boublik J Frank 《Journal of molecular biology》1988,201(2):393-404
A structural study of Escherichia coli 50 S ribosomal subunits depleted selectively of proteins L7/L12 and visualized by low-dose electron microscopy has been carried out by multivariate statistical analysis, classification schemes and the new reconstruction technique from single-exposure, random-conical tilt series. This approach has allowed us to solve the three-dimensional structure of the depleted 50 S subunits at a resolution of 3 nm-1. In addition, two distinct morphological populations of subunits (cores) have been identified in the electron micrographs analyzed and have been separately studied in three dimensions. Depleted subunits in the two morphological states present as main features common to these two structures but different from those of the non-depleted subunit (1) the absence of the stalk, (2) a rearrangement of the stalk-base that changes the overall structure of this region. This morphological change is quite noticeable and important, since this region is mapped as a part of the GTPase center. The two conformations differ mainly in the orientation of the area between the L1 region and the head (the probable localization of the peptidyl transferase center) and in the accessibility of the region located below the head. A possible relationship of these structural changes to the functional dynamics of the ribosome is suggested. 相似文献
7.
8.
9.
10.
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G•A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037–1043 and 1112–1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson–Crick/Watson–Crick (cis W.C.) G•A conformation for the tandem (G•A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G•A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination. 相似文献
11.
So that the topographic and dynamic properties of the L7/L12--L10 complex in the 50S ribosome of Escherichia coli could be studied, methods and reagents were developed in order to introduce fluorescent groups at specific positions of these proteins. In the case of L7/L12, this was done by attaching an aldehyde group to Lys-51 of the protein by using 4-(4-formylphenoxy)butyrimidate or by converting the amino terminus of L12 into an aldehyde group by periodate oxidation. Subsequent reaction of the aldehyde groups with newly developed hydrazine derivatives of fluorescein and coumarin resulted in specifically labeled L7/L12 derivatives. L10 was modified at the single cysteine residue with N-[7-(dimethylamino)-4-methylcoumarinyl]maleimide. The fluorescent proteins L10 and L7/L12 could be reconstituted into 50S ribosomes. The resulting specifically labeled 50S ribosomes show 25--100% activity in elongation factor G dependent GTPase as well as in polyphenylalanine synthesis. The fluorescent properties of the labeled 50S ribosomes show that these fluorescent derivatives are suitable for energy transfer studies. 相似文献
12.
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually. 相似文献
13.
Summary A temperature sensitive mutant, termed JE1306, derived from Escherichia coli strain PA3092 was found to have an alteration in the ribosomal protein L25. Crosses with various Hfr strains and transductions with P1kc phage have revealed that the mutation maps at 47.3 min between nalA and fpk, in a region where no ribosomal protein gene has so far been located. The gene affected by this mutation is most probably the structural gene for protein L25 (rplY), because a strain heteromerozygous for the region shows both wild type and mutant forms of protein L25. 相似文献
14.
The gene for the ribosomal L12 protein from the archaebacterium Methanococcus vannielii was cloned into the expression vector pKK223-3. The protein was overexpressed and remained stable in Escherichia coli XL1 cells. Purification yielded a protein with the same amino acid composition and sequence as in Methanococcus but it was acetylated at the N terminus as in the case with the homologous protein of E. coli. The in vivo incorporation of the overexpressed protein into the E. coli ribosomes was not observed. The overexpressed M. vannielii protein MvaL12e was incorporated into halobacterial ribosomes, thereby displacing the corresponding halobacterial L12 protein. Intact 70 S ribosomes were reconstituted from halobacterial 50 S subunits carrying the MvaL12e protein. These ribosomes were as active as native halobacterial ribosomes in a poly(U) assay. On the other hand, our attempts to incorporate L12 proteins from Bacillus stearothermophilus and E. coli into halobacterial ribosomes were not successful. These results support the conclusion which is based on primary sequence and predicted secondary structure comparisons that there exist two distinct L12 protein families, namely the eubacterial L12 protein family and the eukaryotic/archaebacterial L12 protein family. 相似文献
15.
16.
J Walleczek R Albrecht-Ehrlich G St?ffler M St?ffler-Meilicke 《The Journal of biological chemistry》1990,265(19):11338-11344
Antibodies were raised against Escherichia coli ribosomal protein S1 and its NH2- and COOH-terminal fragments, and their specificity was demonstrated by a variety of immunological techniques. These antibodies were then used to investigate the location of protein S1 and its NH2- and COOH-terminal domains on the surface of the 30 S ribosomal subunit by immunoelectron microscopy. In order to prevent dissociation of the protein during the experiments, S1 was cross-linked to 30 S subunits with dithiobis(succinimidyl-propionate); cross-linking yield was 100%. Epitopes of the NH2-terminal domain of S1 were localized at the large lobe of the 30 S ribosomal subunit, close to the one-third/two-thirds partition on the side which in the 70 S ribosome faces the cytoplasm. Experiments with monovalent Fab fragments specific for the COOH-terminal part of S1 provide evidence that the COOH-terminal domain forms an elongated structure extending at least 10 nm from the large lobe of the small subunit into the cytoplasmic space. 相似文献
17.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12, one within residues 74-120 and the other within residues 1-73, shown before to inhibit the binding of EF-G, have been tested for their effects on the binding to E. coli ribosomes of EF-Tu-aminoacyl-tRNA-GTP ternary complex and on peptidyl transferase activity. Both antibodies inhibit the binding of ternary complex and EF-Tu-dependent GTPase but have no inhibitory effect on peptidyl transferase activity. The inhibition of binding of both elongation factors is indicative of overlapping binding sites for EF-G and EF-Tu. The inhibition by both antibodies implies the contribution of both domains of L7/L12 to this binding site. This implies the location of one or more of the C-terminal domains of L7/L12 on the body of the 50S subunit. The absence of any inhibition of peptidyl transferase activity shows distinct separation of this site from the factor binding site. 相似文献
18.
19.
Richard Langlois C.C. Lee Charles R. Cantor Robert Vince Sidney Pestka 《Journal of molecular biology》1976,106(2):297-313
The distance between the erythromycin binding site on the 50 S Escherichia coli ribosome and protein L7 has been measured by singlet-singlet energy transfer. A non-covalently bound erythromycin derivative, fluoroscein isothiocyanate erythromycylamine, was used as the acceptor. This derivative can be completely displaced from ribosomes by erythromycin, suggesting that they have the same binding site. 1,5-Iodoacetylethylenediamine naptholsulfonate-labeled protein L7 served as the fluorescent donor. It was reconstituted with salt/ethanol-washed 50 S cores. This readdition was accompanied by total recovery of elongation factor G-dependent GTPase activity. This suggests that the protein modification does not significantly perturb 50 S function or structure. Energy transfer measurements by both static and lifetime techniques were in good agreement. After consideration of various errors that enter the measurements and calculations, the L7-erythromycin distance is estimated to be 70 ± 10 Å. This long distance is interesting, since both sites may be involved in translocation.The fluorescent derivative of erythromycin was also used to study binding kinetics to the 50 S and 70 S ribosomes. Binding is a simple second-order step and proceeds about 11 times faster on the 70 S particle. Exchange of the fluorescent derivative with excess erythromycin is limited by the dissociation rate, and this is four times faster on the 70 S particle. These results suggest that the erythromycin site is more accessible on the 70 S particle, and may be an indication of conformational changes in the 50 S ribosome upon combination with the 30 S ribosome. 相似文献
20.
The ND4L subunit is the smallest mitochondrial DNA-encoded subunit of the proton-translocating NADH-quinone oxidoreductase (complex I). In an attempt to study the functional and structural roles of the NuoK subunit (the Escherichia coli homologue of ND4L) of the bacterial NADH-quinone oxidoreductase (NDH-1), we have performed a series of site-specific mutations on the nuoK gene of the NDH-1 operon by using the homologous recombination technique. The amino acid residues we targeted included two highly conserved glutamic acids that are presumably located in the middle of the membrane and several arginine residues that are predicted to be on the cytosolic side. All point mutants examined had fully assembled NDH-1 as detected by blue-native gel electrophoresis and immunostaining. Mutations of nearly perfectly conserved Glu-36 lead to almost null activities of coupled electron transfer with a concomitant loss of generation of electrochemical gradient. A significant diminution of the coupled activities was also observed with mutations of another highly conserved residue, Glu-72. These results may suggest that both membrane-embedded acidic residues are important for the coupling mechanism of NDH-1. Furthermore, a severe impairment of the coupled activities occurred when two vicinal arginine residues on a cytosolic loop were simultaneously mutated. Possible roles of these arginine residues and other conserved residues in the NuoK subunit for NDH-1 function were discussed. 相似文献