首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Glucan phosphorylases from rabbit skeletal muscle, potato tubers and Escherichia coli catalyze the utilization of 2,6-anhydro-1-deoxy-D-gluco-hept-1-enitol (heptenitol) in the presence of arsenate or phosphate. 1H-NMR analysis in the presence of 2H2O and arsenate indicated formation of 1-[1-2H]deoxy-alpha-D-glucoheptulose with rates comparable to the arsenolysis of poly- or oligosaccharides. The reaction depends on the presence of a dianionic 5'-phosphate group of pyridoxal in the active conformation of the phosphorylases. Heptenitol is the first known substrate of alpha-glucan phosphorylases which does not require a primer. This is explained by the finding that heptenitol is exclusively used as substrate for the degradative pathway of the phosphorylase reaction where it competes with polysaccharide substrates. In the presence of phosphate the reaction product is 1-deoxy-alpha-D-gluco-heptulose 2-phosphate (heptulose-2-P), which subsequently inhibits the reaction. This characterizes heptulose-2-P as an enzyme-derived inhibitor. The Ki = 1.9 X 10(-6) M with potato phosphorylase suggests the formation of a transition-state-like enzyme-ligand complex. These findings, together with the fact that the phosphates of heptulose-2-P and pyridoxal 5'-phosphate are linked by hydrogen bridges [Klein, H. W., Im, M. J., Palm, D. & Helmreich, E. J. M. (1984) Biochemistry 23, 5853-5861], make it likely that both phosphates are involved in phosphorylase catalysis. A catalytic mechanism of phosphorylase action is proposed in which a 'mobile' phosphate anion plays a versatile role. It serves as proton carrier for the substrate activation, it stabilizes the intermediate and acts as a nucleophile which can accept a glycosyl residue reversibly.  相似文献   

2.
The crystal structure of phosphorylase b-heptulose 2-phosphate complex with oligosaccharide and AMP bound has been refined by molecular dynamics and crystallographic least-squares with the program XPLOR. Shifts in atomic positions of up to 4 A from the native enzyme structure were correctly determined by the program without manual intervention. The final crystallographic R value for data between 8 and 2.86 A resolution is 0.201, and the overall root-mean-square difference between the native and complexed structure is 0.58 A for all protein atoms. The results confirm the previous observation that there is a direct hydrogen bond between the phosphate of heptulose 2-phosphate and the pyridoxal phosphate 5'-phosphate group. The close proximity of the two phosphates is stabilized by an arginine residue, Arg569, which shifts from a site buried in the protein to a position where it can make contact with the product phosphate. There is a mutual interchange in position between the arginine and an acidic group, Asp283. These movements represent the first stage of the allosteric response which converts the catalytic site from a low to a high-affinity binding site. Communication of these changes to other sites is prevented in the crystal by the lattice forces, which also form the subunit interface. The constellation of groups in the phosphorylase transition state analogue complex provides a structural basis for understanding the catalytic mechanism in which the cofactor pyridoxal phosphate 5'-phosphate group functions as a general acid to promote attack by the substrate phosphate on the glycosidic bond when the reaction proceeds in the direction of glycogen degradation. In the direction of glycogen synthesis, stereoelectronic effects contribute to the cleavage of the C-1-O-1 bond. In both reactions the substrate phosphate plays a key role in transition state stabilization. The details of the oligosaccharide, maltoheptaose, interactions with the enzyme at the glycogen storage site are also described.  相似文献   

3.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

4.
When rabbit muscle phosphorylase reconstituted with pyridoxal (5')-diphospho(1)-alpha-D-glucose is incubated with glycogen, its glucosyl moiety is transferred to the nonreducing end of glycogen with the formation of a new alpha-1,4-glucosidic linkage. This finding provided the first evidence for the direct phosphate-phosphate interaction between the coenzyme pyridoxal 5'-phosphate and the substrate alpha-D-glucose 1-phosphate in the phosphorylase catalytic reaction (Takagi, M., Fukui, T., and Shimomura, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3716-3719). We have examined whether pyridoxal(5')triphospho(1)-alpha-D-glucose can act in a similar manner to the diphospho compound or not. In the absence of glucan the enzyme-bound triphospho compound was stable for 1 day at pH 6-9. In the presence of glucan, however, its glucosidic linkage was cleaved, and the glucosyl moiety liberated was transferred to glycogen with the formation of a new alpha-1,4-glucosidic linkage. Allosteric activator AMP accelerated the reaction and allosteric inhibitor glucose 6-phosphate showed the reverse effect. The pH optimum of the reaction was pH 8.1-8.4. Mg2+ slightly but significantly accelerated the reaction, whereas Mn2+ and Ca2+ inhibited the reaction. These results indicate that the glucosyltransfer from the triphospho compound occurs in an identical manner to that from the diphospho compound. Based on the present and previous data, we discuss the catalytic mechanism of phosphorylase, especially in comparison with that of phosphoryltransferases.  相似文献   

5.
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis.  相似文献   

6.
Y C Chang  T McCalmont  D J Graves 《Biochemistry》1983,22(21):4987-4993
Pyridoxal-reconstituted phosphorylase was used as a model system to study the possible functions of the 5'-phosphoryl group of pyridoxal 5'-phosphate (PLP) in rabbit muscle glycogen phosphorylase. Kinetic study was conducted by using competitive inhibitors of phosphite, an activator, and alpha-D-glucopyranose 1-phosphate (glucose-1-P) to study the relationship between the PLP phosphate and the binding of glucose-1-P to phosphorylase. Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy of fluorophosphate bound to pyridoxal phosphorylase showed that its ionization state did not change during enzymatic catalysis. Evaluation of the apparent kinetic parameters for the activation of pyridoxal phosphorylase with different analogues having varied pKa2 values demonstrated a dependency of KM on pKa2. Molybdate, capable of binding as chelates in a trigonal-bipyramidal configuration, was tested for its inhibitory property with pyridoxal phosphorylase. On the basis of the results in this study, several conclusions may be drawn: (1) The bound phosphite in pyridoxal phosphorylase and, possibly, the 5'-phosphoryl group of PLP in native phosphorylase do not effect the glucose-1-P binding. (2) One likely function of the 5'-phosphoryl group of PLP in native phosphorylase is acting as an anchoring point to hold the PLP molecule and/or various amino acid side chains in a proper orientation for effective catalysis. (3) The force between the PLP phosphate and its binding site in phosphorylase is mainly electrostatic; a change of ionization state during catalysis is unlikely. (4) Properties of the central atoms of different anions are important for their effects as either activators or inhibitors of pyridoxal phosphorylase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pyridoxal 5′-phosphate, the vitamin B6 derivative, acts as the coenzyme of many enzymes involved in amino acid metabolism. Exceptionally, this compound was found covalently bound to glycogen phosphorylase, the key enzyme in the regulation of glycogen metabolism. Although it is essential for the function of phosphorylase, its direct role has remained an enigma. We have recently found that the glucose moiety of pyridoxal (5′)diphospho (1)-α-D -glucose, a conjugate of pyridoxal 5′-phosphate and glucose 1-phosphate through a pyrophosphate linkage, is transferred to the nonreducing end of glycogen, forming a new α-1,4-glucosidic linkage. This finding emphasizes the importance of the direct phosphate-phosphate interaction between the coenzyme and the substrate in the phosphorylase catalytic reaction. We have proposed a catalytic mechanism for phosphorylase in which the phosphate group of pyridoxal 5′-phosphate acts as an electrophile to the phosphate group of glucose 1-phosphate. This appears to represent the first instance of the direct involvement of a phosphate group in catalysis by enzymes.  相似文献   

8.
R J Uhing  S R Lentz  D J Graves 《Biochemistry》1981,20(9):2537-2544
Dimethoxyethane, a good activator of phosphorylase b, has been used to study mechanisms of phosphorylase activation and the catalytic reaction. Activation can be explained best by an alteration of the allosteric equilibrium in favor of the active R conformation. Lesser effects are seen with phosphorylase a, and activation does not alter appreciably the equilibrium between the dimeric and tetrameric forms. With 20% 1,2-dimethoxyethane, the Vm value of phosphorylase b is 74% of that obtained in the presence of adenosine monophosphate. In the presence of 10% 1,2-dimethoxyethane, the Ki value for glucose inhibition is increased 3-fold, but inhibition by 1,5-gluconolactone is increased. The allosteric activation of glycogen phosphorylase results in a change in pK1 for the pH-activity profile. The formation of the dianionic form of the phosphoryl group of the coenzyme, pyridoxal phosphate, may account for this change. By analogy to the effects of anions and a change in dielectric on the acid hydroylsis of glucose 1-phosphate, it is suggested that the dianion of the coenzyme could stabilize the developing positive charge of an oxonium ion intermediate. Dimethoxyethane also affects the interaction of pyridoxal phosphate with phosphorylase. It influences the rates of both resolution and reconstitution. Good preparations of apophosphorylase a can be made by using 1,2-dimethoxyethane in the resolution medium.  相似文献   

9.
K Feldmann  E J Helmreich 《Biochemistry》1976,15(11):2394-2401
1 H NMR spectra of the 3-0-methylpyridoxal 5'-phosphate-n-butylamine reaction product indicated that this analogue forms a Schiff base in aprotic solvent. The uv spectral properties of 3-0-methylpyridoxal-5'-phosphate phosphorylase b correspond to those of the n-butylamine Schiff base derivative in dimethyl sulfoxide. On the basis of that and auxiliary uv and 1H NMR spectra of pyridoxal and pyridoxal 5'-phosphate and the corresponding Schiff base derivatives we have verified that pyridoxal 5' -phosphate is also bound as a Schiff base to phosphorylase and not as an aldamine. Since 3-0-methylpyridoxal-5'-phosphate phosphorylase is active, a proton shuttle between the 3-hydroxyl group and the pyridine nitrogen is excluded. This directs attention to the 5' -phosphate group of the cofactor as a candidate for a catalytic function. 31P NMR spectra of pyridoxal 5' -phosphate in phosphorylase b indicated that deprotonation of the 5' -phosphate group was unresponsive to external pH. Interaction of phosphorylase b with adenosine 5' -monophosphate, the allosteric effector required activity, and arsenate, which substitutes for phosphate as substrate, triggered a conformational change which resulted in deprotonation of the 5' -phosphate group of pyridoxal 5' at pH 7.6. It now behaved like in the pyridoxal-phosphate-epsilon-aminocaproate Schiff base in aqueous buffer, where the diionized form is dominant at this pH. Differences of line widths of the adenosine 5' -monophosphate signal point to different life times of the allosteric effector- enzyme complexes in the presence and absence of substrate (arsenate).  相似文献   

10.
Pyridoxal(5')diphospho(1)-alpha-D-glucose has been tested as an inhibitor of native glycogen phosphorylases a and b. Its inhibition patterns with respect to substrate, glucose 1-phosphate, and activator, adenosine monophosphate, show it to be a potent (Ki = 40 microM) R-state inhibitor of phosphorylase b, mimicking the binding of glucose-1-phosphate, and, as predicted for an R-state inhibitor, its binding to AMP-activated phosphorylase a is even tighter (Ki = 10 microM). Moreover, it is demonstrated that its binding does not involve covalent imine formation from the pyridoxal aldehyde to an active-site lysine residue. It thus represents the tightest binding R-state inhibitor reported to date, and a 31P NMR study of the effects of binding of this inhibitor upon 31P resonances for the coenzyme phosphate and that of the nucleotide activator is presented. Results obtained are essentially identical to those obtained previously using glucose cyclic 1,2-phosphate, corroborating the previous conclusions. A rationale for the tightness of the binding is presented, as are other possible uses of this compound in studies on glycogen phosphorylase and other similar enzymes.  相似文献   

11.
A mechanism for the phosphorylase reaction is proposed which offers a plausible explanation for the essential role of pyridoxal 5'-phosphate in glycogen phosphorylases: in the forward direction, phosphorolysis of alpha-1,4-glycosidic bonds in oligo- or polysaccharides is started by protonation of the glycosidic oxygen by the substrate orthophosphate followed by stabilization of the incipient oxocarbonium ion and subsequent covalent binding to form alpha-glucose 1-phosphate. In the reverse direction, protonation of the phosphate of glucose 1-phosphate destabilizes the glycosidic bond and promotes formation of a glucosyl oxocarbonium ion-phosphate anion pair. In the subsequent step the phosphate anion facilitates the nucleophilic attack of a terminal glucosyl residue on the carbonium ion bringing about alpha-1,4-glycosidic bond formation and primer elongation. Both in the forward and reverse reactions, the phosphate of the cofactor pyridoxal 5'-phosphate acts as a general acid (PL-OPO3H- or PL-OPO3(2-) and protonates the substrate phosphate functioning as proton shuttle. Thus in glycogen phosphorylases, phosphates which directly interact with each other have replaced a pair of amino acid carboxyl groups functioning in catalysis of carbohydrases.  相似文献   

12.
Fluorescence energy transfer [cf. F?rster, T. (1948) Ann. Phys. 6, 55-75] was tested for its suitability to study quantitative interactions of subunits of G0 with each other and these subunits or trimeric G0 with the beta 1-adrenoceptor in detergent micelles or after reconstitution into lipid vesicles [according to Feder, D., Im, M.-J., Klein, H. W., Hekman, M., Holzh?fer, A, Dees, C., Levitzki, A., Helmreich, E. J. M. & Pfeuffer, T. (1986) EMBO J. 5, 1509-1514]. For this purpose, alpha 0- and beta gamma-subunits and trimeric G0 purified from bovine brain, the beta gamma-subunits from bovine rod outer segment membranes and the beta 1-adrenoceptor from the turkey erythrocyte were all labelled with either tetramethylrhodamine maleimide or fluorescein isothiocyanate under conditions which leave the labelled proteins functionally intact. In the case of alpha 0- and beta gamma-interactions, specific high-affinity binding interactions (Kd approximately 10 nM) and nonspecific low-affinity binding interactions (Kd approximately 1 microM) could be readily distinguished by comparing fluorescence energy transfer before and after dissociation with 10 microM guanosine 5'-O-[gamma-thio]triphosphate and 10 mM MgCl2 where only low-affinity binding interactions remained. Interactions between alpha 0- and beta gamma-subunits from bovine brain or from bovine retinal transducin did not differ much. The beta gamma-subunits from bovine brain were found to bind with high transfer efficiency and comparable affinities to the hormone-activated and the nonactivated beta 1-receptor reconstituted in lipid vesicles: Kd = 100 +/- 20 and 120 +/- 20 nM, respectively; however, beta gamma-subunits from transducin appeared to bind more weakly to the beta 1-adrenoceptor than beta gamma-subunits from bovine brain. Separated purified homologous alpha 0- and beta gamma-subunits from bovine brain interfered mutually with each other in binding to the beta 1-adrenoceptor presumably because they had a greater affinity for each other than for the receptor. These findings attest to the suitability of fluorescence energy transfer for studying protein-protein interactions of G-proteins and G-protein-linked receptors. Moreover, they supported the previous finding [Kurstjens, N. P., Fr?hlich, M., Dees, C., Cantrill, R. C., Hekman, M. & Helmreich, E. J. M. (1991) Eur. J. Biochem. 197, 167-176] that beta gamma-subunits can bind to the nonactivated beta 1-adrenoceptor.  相似文献   

13.
A glycogen phosphorylase analog missing only the amino-terminal 16 to 18 residues, which include the phosphorylation site, was produced by subtilisin Carlsberg cleavage of phosphorylase b in the presence of caffeine. The analog, named phosphorylase b's, was purified, and its enzymatic properties were compared with those of phosphorylase b. The KM's for glucose 1-phosphate are similar, but phosphorylase b's has a VM 43% higher than that of phosphorylase b. Also, phosphorylase b's is less sensitive to inhibition by glucose 6-phosphate and stimulation by sodium fluoride than is phosphorylase b. The subunit interactions in the two enzyme forms were also compared. The monomer-monomer interactions in phosphorylase b's are weaker than in phosphorylase b, as evidenced by a faster rate of resolution of the coenzyme, pyridoxal phosphate, from phosphorylase b's. The dimer-dimer interactions are also weaker in phosphorylase b's than in phosphorylase b, because phosphorylase b's does not form tetramers or crystals as readily as does phosphorylase b. Because removal of the amino-terminal segment changes the properties of the enzyme, this segment must be interacting with other parts of the protein. This statement conflicts with previous interpretation of X-ray crystallographic data that suggest that the amino-terminal region of phosphorylase b is freely mobile. Possible explanations for this contradiction are discussed.  相似文献   

14.
The interaction between pyridoxal 5'-phosphate and the convertible serine of glycogen phosphorylase has been investigated by using: specific interconverting enzymes, phosphorylase kinase and phosphorylase phosphatase; effectors, glucose and glucose 6-phosphate; and a protein kinase and trypsin. Both phosphorylase kinase and phosphorylase phosphatase utilized the native protein while having little influence on the apoprotein. Removal of a peptide containing the critical serine residue gave phosphorylase b' from which the pyridoxal 5'-phosphate in phosphorylase has an important effect on enzymic interconversion.  相似文献   

15.
W J Ray  J W Burgner  C B Post 《Biochemistry》1990,29(11):2770-2778
Near ultraviolet spectral studies were conducted on two inhibitor complexes obtained by treating the dephospho form of the phosphoglucomutase.Mg2+ complex with inorganic vanadate in the presence of either glucose 1-phosphate [cf. Percival, M. D., Doherty, K., & Gresser, M. J. (1990) Biochemistry (first of four papers in this issue)] or glucose 6-phosphate. Part of the spectral differences between the two inhibitor complexes arises because the glucose phosphate moiety in the complex derived from glucose 1-phosphate binds to the enzyme in a different way from the glucose phosphate moiety in the complex derived from glucose 6-phosphate and because these alternative binding modes produce different environmental effects on the aromatic chromophores of the dephospho enzyme. These spectral differences are strikingly similar to those induced by the binding of glucose 1-phosphate and glucose 6-phosphate to the phospho enzyme--which shows that the glucose 1-phosphate and glucose 6-phosphate moieties occupy positions in the inhibitor complexes closely related to those that they occupy in their respective catalytically competent complexes. This binding congruity indicates that in the inhibitor complexes the oxyvanadium grouping is bound at the site where (PO3-) transfer normally occurs. 31P NMR studies of the phosphate group in these complexes also provide support for this binding pattern. A number of other systems based on compounds with altered structures, such as the deoxysugar phosphates, or systems with different compositions, as in the case of the metal-free enzyme or of the glucose phosphates plus nitrate, also were examined for evidence that complexes analogous to the inhibitor complexes were formed, but none was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Phosphorylase: control and activity   总被引:5,自引:0,他引:5  
Recent results from the crystallographic studies on glycogen phosphorylase b at 2 A resolution are reviewed with special reference to other themes of the meeting. The structural similarity of the fold of 150 residues in phosphorylase to the observed in lactate dehydrogenase is discussed and the binding sites for NADH in phosphorylase are described. The binding of the potent inhibitor glucose-1,2-cyclic phosphate to phosphorylase b in the crystal has been studied at 3 A resolution. The results are compared with those previously obtained for glucose-1-phosphate and discussed with reference to proposals for a mechanism of catalysis that involves the essential cofactor pyridoxal phosphate.  相似文献   

17.
Abstract: The presence of glycogen in astroglia-rich primary cultures derived from the brains of newborn rats depends on the availability of glucose in the culture medium. On glucose deprivation, glycogen vanishes from the astroglial cultures. This decrease of glycogen content is completely prevented if 2-deoxyglucose in a concentration of > 1 m M or 1,5-gluconolactone (20 m M ) is present in the culture medium. 2-Deoxyglucose itself or 3- O -methylglucose, a glucose derivative that is not phosphorylated by hexokinase, does not reduce the activity of glycogen phosphorylase purified from bovine brain or in the homogenate of astroglia-rich rat primary cultures. In contrast, deoxyglucose-6-phosphate strongly inhibits the glycogen phosphorylase activities of the preparations. Half-maximal effects were obtained at deoxyglucose-6-phosphate concentrations of 0.75 (phosphorylase a, astroglial culture), 5 (phosphorylase b, astroglial culture), 2 (phosphorylase a, bovine brain), or 9 m M (phosphorylase b, bovine brain). Thus, the block of glycogen degradation in these cells appears to be due to inhibition of glycogen phosphorylase by deoxyglucose-6-phosphate rather than deoxyglucose itself. These results suggest that glucose-6-phosphate, rather than glucose, acts as a physiological negative feedback regulator of the brain isoenzyme of phosphorylase and thus of glycogen degradation in astrocytes.  相似文献   

18.
Direct observation of the progress of a catalysed reaction in crystals of glycogen phosphorylase b has been made possible through fast crystallographic data collection achieved at the Synchrotron Radiation source at Daresbury, UK. In the best experiments, data to 2.7 A resolution (some 108,300 measurements; 21,200 unique reflections) were measured in 25 min. In a series of time-resolved studies in which the control properties of the enzyme were exploited in order to slow down the reaction, the conversion of heptenitol to heptulose-2-phosphate, the phosphorylysis of maltoheptaose to yield glucose-1-phosphate and the oligosaccharide synthesis reaction involving maltotriose and glucose-1-phosphate have been monitored in the crystal. Changes in electron density in the difference Fourier maps are observed as the reaction proceeds not only at the catalytic site but also the allosteric and glycogen storage sites. Phosphorylase b is present in the crystals in the T state and under these conditions exhibits low affinity for both phosphate and oligosaccharide substrates. There are pronounced conformational changes associated with the formation and binding of the high-affinity dead-end product, heptulose-2-phosphate, which show that movement of an arginine residue, Arg 569, is critical for formation of the substrate-phosphate recognition site. The results are discussed with reference to proposals for the enzymic mechanism of phosphorylase. The feasibility for time-resolved studies on other systems and recent advances in this area utilizing Laue diffraction are also discussed.  相似文献   

19.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

20.
Previous crystallographic studies on glycogen phosphorylase have described the different conformational states of the protein (T and R) that represent the allosteric transition and have shown how the properties of the 5'-phosphate group of the cofactor pyridoxal phosphate are influenced by these conformational states. The present work reports a study on glycogen phosphorylase b (GPb) complexed with a modified cofactor, pyridoxal 5'-diphosphate (PLPP), in place of the natural cofactor. Solution studies (Withers, S.G., Madsen, N.B., & Sykes, B.D., 1982, Biochemistry 21, 6716-6722) have shown that PLPP promotes R-state properties of the enzyme indicating that the cofactor can influence the conformational state of the protein. GPb complexed with pyridoxal 5'-diphosphate (PLPP) has been crystallized in the presence of IMP and ammonium sulfate in the monoclinic R-state crystal form and the structure refined from X-ray data to 2.8 A resolution to a crystallographic R value of 0.21. The global tertiary and quaternary structure in the vicinity of the Ser 14 and the IMP sites are nearly identical to those observed for the R-state GPb-AMP complex. At the catalytic site the second phosphate of PLPP is accommodated with essentially no change in structure from the R-state structure and is involved in interactions with the side chains of two lysine residues (Lys 568 and Lys 574) and the main chain nitrogen of Arg 569. Superposition of the T-state structure shows that were the PLPP to be incorporated into the T-state structure there would be a close contact with the 280s loop (residues 282-285) that would encourage the T to R allosteric transition. The second phosphate of the PLPP occupies a site that is distinct from other dianionic binding sites that have been observed for glucose-1-phosphate and sulfate (in the R state) and for heptulose-2-phosphate (in the T state). The results indicate mobility in the dianion recognition site, and the precise position is dependent on other linkages to the dianion. In the modified cofactor the second phosphate site is constrained by the covalent link to the first phosphate of PLPP. The observed position in the crystal suggests that it is too far from the substrate site to represent a site for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号