首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we described a novel 3-pS Ca(2+)-conducting channel that is activated by BAPTA and thapsigargin-induced passive depletion of intracellular Ca(2+) stores and likely to be a native store-operated channel in vascular smooth muscle cells (SMC). Neither Ca(2+) nor inositol 1,4,5-trisphosphate or other second messengers tested activated this channel in membrane patches excised from resting SMC. Here we report that these 3-pS channels are activated in inside-out membrane patches from SMC immediately upon application of Ca(2+) influx factor (CIF) extracted from mutant yeast, which has been previously shown to activate Ca(2+) influx in Xenopus oocytes and Ca(2+) release-activated Ca(2+) current in Jurkat cells. In bioassay experiments depletion of Ca(2+) stores in permeabilized human platelets resulted in the release of endogenous factor, which activated 3-pS channels in isolated inside-out membrane patches excised from SMC and exposed to permeabilized platelets. The same 3-pS channels in excised membrane patches were also activated by acid extracts of CIF derived from human platelets with depleted Ca(2+) stores, which also stimulated Ca(2+) influx upon injection into Xenopus oocytes. Specific high pressure liquid chromatography fractions of platelet extracts were found to have CIF activity when injected into oocytes and activate 3-pS channels in excised membrane patches. These data show for the first time that CIF produced by mammalian cells and yeast with depleted Ca(2+) stores directly activates native 3-pS cation channels, which in intact SMC are activated by Ca(2+) store depletion.  相似文献   

2.
Superoxide dismutase (SOD) triggers activation of human platelets exposed to subthreshold concentrations of arachidonic acid and collagen. The subthreshold concentrations used are not able to activate platelets but "prime" platelets to be activated by SOD. The addition of SOD to arachidonic acid-or collagen-primed platelets induced aggregation, thromboxane A2 production, and release of [3H]serotonin. Superoxide dismutase does not have any effect on resting platelets and ADP-, thrombin-, calcium ionophore A23187-, PAF-, or U46619-stimulated platelets. Furthermore, superoxide dismutase-dependent platelet activation is fully prevented by catalase and/or aspirin, suggesting a role for H2O2 and the involvement of the cyclooxygenase pathway of arachidonic acid in such activation.  相似文献   

3.
Several reports have suggested that the activity of platelet phospholipase A2 is modulated by GTP-binding protein(s) whose nature and properties need to be defined. Fluoroaluminate is known to activate G-proteins and this leads to a number of cellular responses including the activation of phospholipases. This paper demonstrates that human platelets, prelabelled with [3H]arachidonic acid, produce free arachidonic acid when stimulated with fluoroaluminate and this effect is time- and dose-dependent. The production of arachidonic acid is not inhibited by neomycin, a PI-cycle inhibitor, but is completely abolished by mepacrine, an inhibitor of both phospholipase A2 and C. At low concentration of fluoroaluminate (10 mM NaF) phospholipase A2 but not phospholipase C is activated. In addition, fluoroaluminate treatment releases beta-thromboglobulin (beta-TG) and this effect is not inhibited by acetylsalicylic acid. Under identical conditions both neomycin and mepacrine suppress the release of arachidonic acid and beta-TG induced by thrombin. Sodium nitroprusside, which increases cGMP levels in platelets, inhibits arachidonic acid liberation and beta-TG release in thrombin-stimulated platelets but has no effect in fluoroaluminate-treated platelets; cGMP was reported to suppress phospholipase C activation. These results are consistent with the hypothesis that, in thrombin-stimulated platelets, the liberation of arachidonic acid and beta-TG are strictly dependent on the activation of phospholipase C. We have also provided evidence for the existence of a phospholipase A2 activated by a G-protein which is independent from the degradation of phosphoinositides and, contrary to phospholipase C, it is not down regulated by cGMP.  相似文献   

4.
Abstract : In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and Gi/o protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.  相似文献   

5.
U46619, a thromboxane A2 mimetic, but not ADP, caused activation of p38 mitogen activated protein (MAP) kinase in aspirin-treated platelets. In nonaspirinated human platelets ADP activated p38 MAP kinase in both a time-and concentration-dependent manner, suggesting that ADP-induced p38 MAP kinase activation requires generation of thromboxane A2. However, neither a thromboxane A2/prostaglandin H2 receptor antagonist SQ29548 and a thromboxane synthase inhibitor, furegrelate, either alone or together, nor indomethacin blocked ADP-induced p38 kinase activation in nonaspirinated platelets. Other cycloxygenase products, PGE2, PGD2, and PGF2alpha, failed to activate p38 kinase in aspirin-treated platelets. Hence, ADP must be generating an agonist, other than thromboxane A2, via an aspirin-sensitive pathway, which is capable of activating p38 kinase. AR-C66096, a P2TAC (platelet ADP receptor coupled to inhibition of adenylate cyclase) antagonist, did not inhibit ADP-induced p38 MAP kinase activation. The P2X receptor selective agonist, alpha, beta-methylene ATP, failed to activate p38 MAP kinase. On the other hand, the P2Y1 receptor selective antagonist, adenosine-2'-phosphate-5'-phosphate inhibited ADP-induced p38 kinase activation in a concentration-dependent manner, indicating that the P2Y1 receptor alone mediates ADP-induced generation of the p38 kinase-activating factor. These results demonstrate that ADP causes the generation of a factor in human platelets, which can activate p38 kinase, and that this response is mediated by the P2Y1 receptor. Neither the P2TAC receptor nor the P2X1 receptor has any significant role in this response.  相似文献   

6.
Human blood platelets, the richest known source of beta-transforming Growth Factor extractable under acid conditions, release in neutral extracts (pH 7.2) a latent form of this growth factor with an apparent molecular weight of 400 Kd. This latent form, poorly active on rat NRK-49F indicator cells in soft agar assays can be activated by exposure to acid pH or 8 molar urea. The acid activated beta-Transforming Growth Factor from neutral extracts elutes on Biogel P60, in 1 molar acetic acid, as a broad peak of apparent molecular weight 15-30 Kd, like when this factor is extracted from platelets by the usual acid-ethanol procedure. Moreover, beta-Transforming Growth Factor from both acid activated neutral extracts and from acid-ethanol extracts elutes on reverse phase at 30% acetonitrile. We suggest that beta-Transforming Growth Factor is stored in human blood platelets as a poorly active high molecular weight complex which may be dissociated and activated in appropriate in vivo microenvironments.  相似文献   

7.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   

8.
It has become increasingly appreciated that receptors coupled to G(alpha)(i) family members can stimulate platelet aggregation, but the mechanism for this has remained unclear. One possible mediator is the small GTPase, Rap1, which has been shown to contribute to integrin activation in several cell lines and to be activated by a calcium-dependent mechanism in platelets. Here, we demonstrate that Rap1 is also activated by G(alpha)(i) family members in platelets. First, we show that platelets from mice lacking the G(alpha)(i) family member G(alpha)(z) (which couples to the alpha(2A) adrenergic receptor) are deficient in epinephrine-stimulated Rap1 activation. We also show that platelets from mice lacking G(alpha)(i2), which couples to the ADP receptor, P2Y12, exhibit reduced Rap1 activation in response to ADP. In contrast, platelets from mice that lack G(alpha)(q) show no decrease in the ability to activate Rap1 in response to epinephrine but show a partial reduction in ADP-stimulated Rap1 activation. This result, combined with studies of human platelets treated with ADP receptor-selective inhibitors, indicates that ADP-stimulated Rap1 activation in human platelets is dependent on both the G(alpha)(i)-coupled P2Y12 receptor and the G(alpha)(q)-coupled P2Y1 receptor. G(alpha)(i)-dependent activation of Rap1 in platelets does not appear to be mediated by enhanced intracellular calcium release because no increase in intracellular calcium concentration was detected in response to epinephrine and because the calcium response to ADP was not diminished in platelets from the G(alpha)(i2)-/- mouse. Finally, using human platelets treated with selective inhibitors of phosphatidylinositol 3-kinase (PI3K) and mouse platelets selectively lacking the G(beta)(gamma)-activated form of his enzyme (PI3Kgamma), we show that G(i)-mediated Rap1 activation is PI3K-dependent. In summary, activation of Rap1 can be stimulated by G(alpha)(i)- and PI3K-dependent mechanisms in platelets and by G(q)- and Ca(2+)-dependent mechanisms, both of which may play a role in promoting platelet activation.  相似文献   

9.
Human platelets have been shown to contain a Ca++- and CoA-independent transacylase enzyme that catalyzes the transfer of arachidonic acid from phosphatidylcholine (PC) to lysoplasmenylethanolamine. It has been suggested that this route may represent a major source for released arachidonic acid in stimulated platelets. In this study, we have shown using arachidonic-labelled human platelets that the thrombin-induced activation of a transacylase reaction was not affected by concentrations of trifluoperazine (TFP) (15 micrograms/2 X 10(9) cells) which abolished the accumulation of free [3H]arachidonic acid in the presence of the cyclooxygenase/lipoxygenase inhibitor BW755C. TFP, at this concentration failed to block the hydrolysis of phosphatidylcholine (PC) completely and had no effect on the increased radioactivity seen in total phosphatidylethanolamine (PE) (160% of control after 4 min of incubation). These results suggest that the transacylase pathway activated in response to thrombin is not likely dependent on calcium. As TFP blocks effectively both the accumulation of free [3H]arachidonic acid and the mass of arachidonic acid without affecting the transfer of this fatty acid from PC to PE in thrombin-stimulated human platelets, it is very unlikely that the transacylation pathway represents a major source of release arachidonic acid. Based on these findings, we conclude that the above pathway may be primarily involved in the turnover of plasmenylethanolamine lipids in stimulated human platelets.  相似文献   

10.
We have used platelets permeabilized with saponin to examine the mechanism by which platelet activation causes the exposure of surface receptors for fibrinogen. Receptor exposure was detected using 125I-fibrinogen and 125I-PAC1, a monoclonal antibody specific for the activated form of the fibrinogen receptor. The potential mediators that were studied included guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and guanosine 5'O-(thiotriphosphate) (GTP gamma S), which cause G protein-dependent phospholipase C activation in platelets; inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release from the platelet dense tubular system; and diacylglycerol and phorbol ester, which activate protein kinase C. Each of these molecules caused fibrinogen and PAC1 binding. The effect of IP3 was mimicked by raising the cytosolic free Ca2+ concentration in the permeabilized platelets. However, IP3 and Ca2+-induced PAC1 binding were abolished by indomethacin or aspirin, which had no effect on PAC1 binding caused by Gpp(NH)p, phorbol ester, or diacylglycerol. This suggests that the response to IP3 and Ca2+ is due to the formation of metabolites of arachidonic acid. One such metabolite, TxA2, is believed to activate platelets by stimulating G protein-dependent phosphoinositide hydrolysis. Indeed, we found that the G protein inhibitor guanyl-5'-yl thiophosphate (GDP beta S) inhibited PAC1 binding caused by a thromboxane A2 analog (U46619), IP3, and Ca2+, but had no effect on diacylglycerol or phorbol ester-induced PAC1 binding. Thrombin-induced PAC1 binding and phosphoinositide hydrolysis were also inhibited by GDP beta S and by pertussis toxin. Increasing the thrombin concentration overcame the inhibition of PAC1 binding caused by GDP beta S but did not overcome the inhibition of phosphoinositide hydrolysis. These observations demonstrate that fibrinogen receptor exposure occurs by at least two routes. One of these, in response to agonists such as thrombin and U46619, is initiated by G protein-dependent phosphoinositide hydrolysis and involves the formation of IP3 and diacylglycerol. IP3 appears to act by stimulating Ca2+-dependent arachidonic acid metabolism which, in turn, triggers further phosphoinositide hydrolysis. Diacylglycerol acts by stimulating protein kinase C. A second route is activated by high concentrations of thrombin and is independent of phosphoinositide hydrolysis.  相似文献   

11.
Receptor-mediated activation of many cells, including blood platelets, leads to changes at the cytoplasmic side of the membrane. In platelets, phospholipases, such as phospholipase C and phospholipase A2, have been shown to become activated. From phospholipids they generate the second messengers diacylglycerol and inositol phosphate(s) and fatty acids, respectively. At the same time, actin polymerization and reorganization of actin filaments into bundles and networks occurs. Here, the association of lipids, radiolabeled either with saturated (palmitic acid) or unsaturated (arachidonic acid) fatty acids, with the cytoskeletons of resting and activated human blood platelets was studied. The relative binding of lipid components to the cytoskeleton of activated platelets labeled with palmitic acid is six times higher than that of platelets labeled with arachidonic acid. Analysis of lipids associated with isolated cytoskeletons of resting and activated platelets (labeled with palmitic acid) showed a 30-fold increase in the binding of labeled lipids to the cytoskeletal structures during activation. Both diacylglycerol and fatty acids were found to be associated with the cytoskeleton of activated platelets. Gel filtration, chromatofocusing, and immunoprecipitation studies demonstrated tight binding of these lipids to alpha-actinin. alpha-Actinin is one of the proteins that rapidly becomes associated with the cytoskeleton during platelet aggregation; it is also one of the molecules proposed to act as an actin-membrane linker. The results reported indicate a possible participation of alpha-actinin, fatty acids, and the phosphoinositide-derived second messenger diacylglycerol in the regulation of cytoskeleton-membrane interactions. Together with the results of others they suggest a possible involvement of the phosphatidylinositol cycle in the assembly of actin filaments and their anchoring to membranes.  相似文献   

12.
Influence of proteins from the Agkistrodon blomhoffii ussuriensis snake venom on platelet activation and aggregation was developed on different model systems in vitro. It was shown that novel disintegrin (Blomus-B) and phospholipase A2 (Blopholipase) from the venom, activated platelets and inhibited their aggregation. Fibrino(geno)lityc enzyme (Blomulyse) does not activate platelets and has no effect on their aggregation stimulated by collagen, but inhibit ADP and adrenalin-stimulated platelet aggregation. Thrombin-like enzyme (Ancistron-Bu) activates platelets but has no effect on their aggregation. Obtained proteins can be used under development of new antiplatelet agents and as instruments for detailed elaboration and deep investigation of processes which proceed with participation of platelets.  相似文献   

13.
Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)β(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)β(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)β(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)β(3) outside-in signaling.  相似文献   

14.
The 825T allele of a common C825T polymorphism in the gene encoding the beta3 subunit of heterotrimeric G proteins is associated with enhanced activation of pertussis toxin (PTX)-sensitive G proteins. We investigated responses of human platelets upon stimulation with epinephrine, which activates PTX-sensitive G proteins, and with agonists which activate additionally, or exclusively PTX-insensitive pathways. Slopes and maximum of the secondary aggregation were significantly enhanced in platelets from 825T allele carriers after epinephrine, and after combined epinephrine/ADP. This effect was more pronounced after inhibition of the cyclooxygenase-2 pathway by acetylsalicylic acid. This phenomenon appeared independent of platelet secretion, or inhibition of the adenylyl cyclase.  相似文献   

15.
We investigated the effects of a stable prostacyclin analogue, carbacyclin, on the interaction of platelets with collagen substrates differing in their ability to activate platelets: human collagens type I, III, IV and V (CI, CIII, CIV and CV), and commercial calf skin collagen type I (CSC). The total adhesion was measured using 51Cr-labelled platelets, and quantitative morphometry of adherent platelets was performed by scanning electron microscopy (SEM). Carbacyclin in the concentrations inducing a 10-fold rise in platelet cAMP did not affect the adhesion of platelets to weak substrates, CV and CSC, but reduced the adhesion to strong substrates, CIV (by 49%) and CI/CIII (by 78%), which stimulated massive spreading and formation of surface-bound aggregates respectively. Carbacyclin inhibited all morphological manifestations of platelet activation associated with adhesion: conversion of native discoid platelets to spherical ones on CSC; massive spreading on CIV; and aggregate formation on CI/CIII. Massive spreading and aggregation on a weak substrate (CSC) stimulated by arachidonic acid and thrombin was also inhibited by carbacyclin. Under the same concentration of agonists aggregation of platelets was more sensitive to the action of carbacyclin, than spreading. Strong collagen substrates CI, CIII and CIV, but not CV and gelatin, inhibited the carbacyclin-induced rise in platelet cAMP.  相似文献   

16.
Thrombopoietin (TPO) plays a crucial role in megakaryocyte differentiation and platelet production. c-Mpl, a receptor for TPO, is also expressed in terminally differentiated platelets. We investigated the effects of TPO on activation of p38 mitogen-activated protein kinase in human platelets. Thrombin, a thrombin receptor agonist peptide, a thromboxane A(2) analogue, collagen, crosslinking the glycoprotein VI, ADP, and epinephrine, but not phorbol 12, 13-dibutyrate activated p38. TPO did not activate p38 by itself, whereas TPO pretreatment potentiated the agonist-induced activation of p38. TPO did not promote phosphorylation of Hsp27 and cytosolic phospholipase A(2) by itself, but enhanced thrombin-induced phosphorylation of them. The specific p38 inhibitor SB203580 strongly inhibited such phosphorylation. Thus, TPO possesses the priming effect on p38 activation in human platelets and could affect platelet functions through the p38 pathway.  相似文献   

17.
Exhaustive extraction of human platelets with 6 M guanidine-HCl, and 5% beta-mercaptoethanol, followed by 5% SDS resulted in a sedimentable material which showed fibrous structure by transmission electron microscopy. When platelets treated with 8 M urea, 50 mM DTT and 2% SDS were applied on a 3% solubilizable acrylamide gel a high molecular weight material could be also isolated which was highly crosslinked by epsilon(gamma-glutamyl)lysine bonds. Its amino acid composition was Asp 110, Glu 119, Ser 55, Gly 70, Arg 33, Thr 41, Ala 112, Pro 93, Tyr 35, Val 18, Met 55, Cys 46, IIe 47, Leu 71, Phe 27, Lys 76 expressed as residue per 1000. The quantity of platelet polymer material as well as the amount of epsilon(gamma-glutamyl)lysine bond was slightly higher in thrombin activated platelets. The insoluble matrix of resting platelets reacts with antibodies against spectrin, alpha-actinin, actin, myosin, tropomyosin. The matrix from activated platelets has shown reaction with additional antibodies including ones against blood coagulation factor XIIIa, fibrinogen, von Willebrand factor, thrombospondin, tubulin and filamin. The presence of an epsilon(gamma-glutamyl)lysine cross-linked cell matrix in platelets is consistent with the observation of a similar structure in other cells.  相似文献   

18.
Treatment of platelets or red cells with small amounts of phospholipase C from Clostridium welchii enables both cells, prior to the onset of lysis, to stimulate prothrombin conversion by coagulation factor Xa and Va in the presence of calcium. Phospholipase C treatment of both cells also exposes significant amounts of phosphatidylserine at the outer surface. The level of phosphatidic acid formed from diglycerides produced by phospholipase C action, is similar to that formed in activated platelets upon triggering the phosphatidylinositol cycle. A possible involvement of this cycle to activate platelets to become more procoagulant is discussed.  相似文献   

19.
The metabolism of polyphosphoinositides was examined in human platelets activated by thrombin. The addition of thrombin to [3H]glycerol-labeled platelets induced an initial loss and a subsequent increase of the radioactivity in phosphatidylinositol-4,5-bisphosphate (TPI) without any significant change in phosphatidylinositol-4-phosphate (DPI). A marked enhancement of [32P]Pi incorporation into TPI occurred in parallel with an increase in this lipid content, which was accompanied with a conccurent decrease in phosphatidylinositol (PI). The rate of this subsequent increase in TPI was smaller than that observed in [3H]arachidonic acid-labeled platelets, suggesting that formed TPI in activated platelets may contain much greater amount of arachidonate than preexisting TPI in resting platelets. These data indicate that thrombin causes a rapid change in TPI metabolism (initial degradation of preexisting TPI and subsequent production of arachidonate-rich TPI), which might be a primary candidate to modulate thrombin-induced function in human platelets.  相似文献   

20.
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号