首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

2.
Food intake (FI), water intake (WI), urine output (UO), Na+ and K+ excretions were investigated for 2 days at 4-h intervals during continuous infusion of saline or vasopressin (VP) 1.0 UI/day, in male Brattleboro vasopressin-deficient rats. Continuous VP infusion reduced significantly 24-h amounts of WI and UO, and increased Na+ excretion. A significant (3.5 h) phase advance of the circadian rhythm of WI was observed, while the group circadian rhythm of Na+ excretion was eliminated due to irregular phase shifts in the different rats. The results suggest that VP do not play a role in the generation of the circadian rhythms of water input and output, but it may participate in their internal synchronization.  相似文献   

3.
To investigate whether prolonged water immersion (WI) results in reduction of central blood volume and attenuation of renal fluid and electrolyte excretion, these variables were measured in connection with 12 h of immersion. On separate days, nine healthy males were investigated before, during, and after 12 h of WI to the neck or during appropriate control conditions. Central venous pressure, stroke volume, renal sodium (UNaV) and fluid excretion increased on initiation of WI and thereafter gradually declined but were still elevated compared with control values at the 12th h of WI. Atrial natriuretic peptide (ANP) concentration in plasma initially increased threefold during WI and thereafter declined to preimmersion levels, whereas plasma renin activity, plasma aldosterone, and norepinephrine remained constantly suppressed. It is concluded that, compared with the initial increases, central blood volume (central venous pressure and stroke volume) is reduced during prolonged WI and renal fluid and electrolyte excretion is attenuated. UNaV is still increased at the 12th h of WI, whereas renal water excretion returns to control values within 7 h. The WI-induced changes in ANP, plasma renin activity, plasma aldosterone, and norepinephrine may all contribute to the initial increase in UNaV. The results suggest, however, that the attenuation of UNaV during the later stages of WI is due to the decrease in ANP release.  相似文献   

4.
Ten normal males rested sitting upright at an air temperature of 28 degrees C for 5.5 h (control, C) and underwent 4 h of graded water immersion (WI) to the umbilicus (UI), to the chest (CI), and to the neck (NI), respectively (water temperature = 34.5 degrees C), on different experimental days. Plasma arginine vasopressin (PAVP) was suppressed during WI compared with C and maximally so during NI. However, there was no change in PAVP comparing CI with UI even though central venous pressure (CVP) increased. CVP increased during CI and NI compared with C but was unchanged during UI, whereas cardiac output (rebreathing method), stroke volume, and plasma volume increased to approximately the same level during all three steps of WI compared with C. Heart rate and total peripheral vascular resistance decreased during UI, CI, and NI. Systolic arterial pressure (SAP) and pulse pressure (PP) were increased gradually from prestudy related to the degree of WI. Also diuresis, natriuresis, kaliuresis, osmotic excretion, and clearance were increased gradually compared with C, whereas free water clearance (CH2O) gradually decreased. There were weak negative but statistically significant correlations between PAVP and CVP and between changes in PAVP from prestudy and corresponding changes in SAP and PP. Furthermore, a statistically significant and negative correlation between CH2O and natriuresis could be established. We conclude that graded immersion gradually increases central blood volume and decreases PAVP. However, not only cardiopulmonary mechanoreceptors but also arterial baroreceptors may play a role in AVP suppression during WI in humans. In hydropenic subjects the suppression of PAVP during WI is apparently not effective in counteracting the decrease in CH2O induced by increased solute excretion.  相似文献   

5.
We found symptomatic hyponatremia in four elderly patients in which serum sodium (Na) levels ranged from 101 to 122 mEq/l. All 4 patients had low levels of plasma adrenocorticotropic hormone (ACTH), serum cortisol, and urinary excretion of 17-OHCS, and poor responses of ACTH to exogenous insulin and antidiuretic hormone (ADH). Other pituitary hormones were all normal. They were therefore diagnosed as having isolated ACTH deficiency. Plasma ADH was relatively high despite hypoosmolality which was associated with the hyponatremia. Water loading test revealed impaired water excretion and poor suppression of plasma ADH. Replacement with 20-30 mg hydrocortisone completely restored the serum Na level and restored the plasma ADH level to the normal range in all 4 patients. Other factors such as decreased glomerular filtration, enhanced urinary Na loss and decreased Na intake were also included. These results indicate that there is marked hyponatremia and that in the presence of hypoosmolality the sustained secretion of ADH is the key factor in causing the impaired water excretion and hyponatremia in isolated ACTH deficiency.  相似文献   

6.
We tested the hypothesis that 1-desamino-8-D-arginine vasopressin (DDAVP), a V2-receptor agonist, could inhibit the diuresis induced by water immersion in humans. Water and electrolyte excretion, plasma atrial natriuretic factor concentration, and plasma aldosterone concentration were measured initially and after 3 h of water immersion in 13 healthy sodium-replete men given either placebo or 20 micrograms of intranasal DDAVP. Guanosine 3',5'-cyclic monophosphate and urea excretion and urine osmolality were also determined. DDAVP inhibited the diuresis induced by water immersion in men: 758 +/- 168 (SE) ml/3 h in the placebo group vs. 159 +/- 28 ml/3 h in the DDAVP group (P less than 0.05). After 3 h of water immersion, plasma atrial natriuretic factor concentrations were increased from 11 +/- 2 to 20 +/- 4 pg/ml in the placebo group and from 14 +/- 2 to 33 +/- 4 pg/ml in the DDAVP group (P less than 0.05). Plasma aldosterone concentrations were decreased from 98 +/- 18 to 45 +/- 6 pg/ml in the placebo group (P less than 0.05) and from 54 +/- 17 to 25 +/- 5 pg/ml in the DDAVP group (P less than 0.05). Despite these changes in aldosterone and atrial natriuretic factor concentrations, which should increase sodium excretion, DDAVP decreased the natriuresis induced by water immersion in humans: 56 +/- 8 meq Na+/3 h in the placebo group vs. 36 +/- 6 meq Na+/3 h in the DDAVP group (P less than 0.05). DDAVP may be used to prevent the diuresis associated with central redistribution of blood volumes that occur during water immersion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Administration of oral contraceptive (OC) has been associated with body fluid retention and in high doses over a long period, promotes hypertension. This present investigation tests the hypothesis that the dietary calcium supplementation increases salt and water excretion in OC (norgestre/ethinylestradiol) treated 32 female albino rats randomly distributed into four (1-4) groups of 8 rats each: Control, OC-treated, OC-treated+ Calcium diet fed and Calcium diet fed only respectively. OC was administered to the appropriate groups by gavage. Experimental diet contained 2.5% calcium supplement. Plasma and urinary [Na+] [K+] were evaluated after 8 weeks of experimentation by flame photometry and plasma [Ca2+] by colorimetric method. OC-treatment induced a significant fall in urinary [Na+]. Water excretion was significantly reduced in these animals (control, 3.1±0.56 Vs OC-treated rats, 1.47±0.16). OC-treated rats had significantly higher plasma [K+] compared to control rats. Calcium supplementation induced increases in plasma [Na+], [K+] and augmented urinary Na+ excretion (OC-treated + Ca2+ diet Vs OC-treated only). Compared with the control rats, high Ca2+ diet fed rats exhibited significant increases in plasma [Na+] and [K+] accompanied by significant decreases in urinary H20 excretion. These results strongly suggest that high dietary Ca2+ supplementation increases salt and water excretion in OC-treated rats and potentially moderates fluid retention and blood pressure in these animals, and may be of clinical significance in OC-induced abnormal fluid retention and perhaps OC-induced hypertension.Keywords: Hypercalcemic-diet, Oral contraceptive, Plasma electrolytes, Hypertension, Female-albino-rats.  相似文献   

8.
Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep   总被引:1,自引:0,他引:1  
To test the hypothesis that atrial natriuretic factor (ANF) has a centrally mediated action on body fluid homeostasis, the effects of intracerebroventricularly (ICV) infused ANF on plasma vasopressin (AVP) concentration and urinary water and electrolyte excretion were investigated in euhydrated and water-deprived conscious sheep. ICV ANF decreased plasma AVP concentration and increased urinary free water excretion in euhydrated sheep, with excretion of Na and K unaltered. However, ICV ANF did not affect urinary volume, free water clearance, or excretion of Na and K in dehydrated animals, although plasma AVP concentration was significantly decreased. The relationship between urine volume and plasma AVP concentration was fitted by a power curve: urine volume = 0.79 X [AVP]-0.71; urine volume changes very little as a function of AVP concentration at the higher ranges. Intravenous infusion of the same amount of ANF was without effect on plasma AVP concentration or urinary excretion in both euhydrated and dehydrated animals. Mean arterial pressure was unchanged throughout all experiments. These results are consistent with the hypothesis that central ANF inhibits AVP secretion.  相似文献   

9.
Because results in literature are discrepant with regard to the effects of water immersion (WI) on the release of norepinephrine (NE) in humans, the following study was performed. Simultaneous measurements of plasma NE, central cardiovascular variables, and renal sodium excretion were conducted in eight normal male subjects on 2 study days; 6 h of thermoneutral (35.0 degrees C) WI to the neck were preceded and followed by 1 h in the seated posture outside the water and 8 h of a seated control period. During the control period, the subjects wore a water-perfused garment (water temperature 34.6 degrees C) to obtain the same skin temperature as during WI. The subjects were fluid restricted overnight and kept in this condition throughout the study. Compared with the prestudy, post-study, and control periods, plasma NE decreased significantly by 61% during WI. Simultaneously, central venous pressure, cardiac output, stroke volume, systolic arterial pressure, and arterial pulse pressure increased, whereas heart rate decreased. Renal sodium excretion and urine flow rate increased. In conclusion, the release of NE is suppressed in humans during immersion. This decrease probably reflects a decrease in sympathetic nervous activity initiated by stimulation of low- and high-pressure baroreceptors. It is possible that the decrease in NE acts as one of several mechanisms of the natriuresis and diuresis of immersion in humans.  相似文献   

10.
We examined the effects of atrial natriuretic polypeptide (hANP) on exocrine function in the isolated and blood-perfused dog pancreas in situ. Intra-arterial injection of hANP (1-10 micrograms) resulted in the dose-dependent increases of the pancreatic juice secretion. The secretory activity of 3 micrograms of hANP was approximately equal to one third of the secretory activity of 0.1 units of secretin. The use of hANP increased the concentration of bicarbonate but not that of sodium and protein in the pancreatic juice as compared with the basal values. These secretory responses to hANP were not inhibited by treatment with haloperidol, sulpiride, phentolamine, propranolol, atropine, cimetidine or ethacrynic acid. These results suggest that hANP acts directly on the pancreatic exocrine gland to stimulate pancreatic secretion; without, however, increasing sodium excretion. The mechanism of this effect remains to be elucidated.  相似文献   

11.
With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.  相似文献   

12.
We reported that plasma human atrial natriuretic polypeptide (hANP) in healthy aged men was significantly higher than that in young men, presumably due to a diminished cellular response to endogenous hANP in the aged subjects (J. Clin. Endocrinol. Metab., 64 (1987) 81). To examine the effect of age on the metabolic clearance rate for hANP, synthetic alpha-hANP (2 micrograms/kg) was administered intravenously to healthy young (n=6) and aged (n=4) men. The plasma hANP was measured by a direct radioimmunoassay. The disappearance of alpha-hANP from plasma was characterized by a biexponential decay curve, in both groups. There was no difference of the initial phase between young and aged groups (young vs aged; 1.2 +/- 0.2 min vs 2.9 +/- 1.0 min), while the second phase of alpha-hANP disappearance in the aged group was significantly prolonged compared with that in the young individuals (young vs aged; 17.3 +/- 3.9 min vs 34.3 +/- 3.0 min, P less than 0.05). We tentatively conclude that the reduced metabolic clearance rates for hANP were responsible, in part, for the high plasma concentrations in the aged men.  相似文献   

13.
The hypothesis was tested that acute water immersion to the neck (WI) compared with 6 degrees head-down tilt (HDT) induces a more pronounced distension of the heart and lower plasma levels of vasoconstrictor hormones. Ten healthy males underwent 30 min of HDT, WI, and a seated control (randomized). During WI, left atrial diameter and stroke volume increased to the same extent as during HDT. Cardiac output increased by 1 l/min more during WI than during HDT. (P < 0.05). Plasma atrial natriuretic peptide increased during WI (P < 0.05) but not during HDT, whereas plasma norepinephrine, vasopressin, and renin activity were suppressed similarly. Mean arterial pressure decreased by 9 mmHg (P < 0.05) during HDT and was unchanged during WI, and heart rate decreased more during HDT (P < 0.05). Arterial pulse pressure increased considerably more during HDT than during WI. In conclusion, the hypothesis was not confirmed because the cardiac atria were similarly distended by acute HDT and WI and the release of vasoconstrictor hormones were suppressed to the same extent.  相似文献   

14.
The study included 15 healthy individuals aged 37.3 +/- 7.7 years and 27 patients with the primary uncomplicated blood hypertension (stages I and II according to WHO classification) of the comparable age, untreated and given a diet containing 100-120 nM Na+ daily. Plasma ANP concentrations were measured prior to and after 30, 60, and 90 minutes following 40 mg furosemide intravenously. An increase in 1-minute urine output and 1-minute Na+ excretion in the urine were determined during 90 minutes following furosemide administration. A significant decrease in ANP plasma levels was noted in all examined individuals following furosemide administration in all time intervals comparing with baseline values. An increase in 1-minute urine output and 1-minute sodium excretion with the urine significantly correlated with plasma ANP decrease during 90 minutes following furosemide administration. The obtained results suggest that furosemide inhibits ANP secretion in the patients with uncomplicated primary hypertension similarly to healthy individuals.  相似文献   

15.
Atrial natriuretic peptide (ANP) is known as a potent natriuretic/diuretic hormone in vertebrates. However, eel ANP infused at doses that did not alter arterial blood pressure (0.3-3.0 pmol/kg/min) decreased urine volume and increased urinary Na concentration in seawater (SW)-adapted eels but not in freshwater (FW)-adapted eels. The renal effects were dose-dependent and disappeared after infusate was switched back to a vehicle (0.9% NaCl). Urinary Na excretion (volume x Na concentration) did not change during ANP infusion. ANP infusion increased plasma ANP concentration, but the increase at the highest dose was still within those observed endogenously after injection of hypertonic saline. Urinary Mg and Ca concentrations increased during ANP infusion in SW eels, but urinary Ca excretion decreased in FW eels. Plasma Na concentration profoundly decreased during ANP infusion only in SW eels, suggesting that ANP stimulates Na extrusion via non-renal routes. These results indicate that ANP is a hormone which specifically extrudes Na ions and thereby promotes SW adaptation in the eel. This is in sharp contrast with mammals where ANP is a volume regulating hormone that extrudes both Na and water.  相似文献   

16.
Renal function was examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 52 d and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Dietary Cd had no major effects on UFR (urine flow rate) and GFR (glomerular filtration rate) but caused increased renal excretion of glucose, protein, and major ions (Mg(2+), Zn(2+), K(+), Na(+), Cl(-) but Ca(2+)). However, dietary Cd did not affect any plasma ions except Na(+) which was significantly elevated in the Cd-acclimated trout. Plasma glucose and ammonia levels fell by 25% and 36% respectively, but neither plasma nor urine urea was affected in Cd-acclimated fish. Dietary Cd exposure resulted in a remarkable increase of Cd load in the plasma (48-fold, approximately 22 ng/mL) and urine (60-fold, 8.9 ng/mL), but Cd excretion via the kidney was negligible on a mass-balance basis. Clearance ratio analysis indicates that all ions, Cd, and metabolites were reabsorbed strongly (58-100%) in both na?ve and dietary Cd exposed fish, except ammonia which was secreted in both groups. Mg(2+), Na(+), Cl(-) and K(+) reabsorption decreased significantly (3-15%) in the Cd-exposed fish relative to the control. Following waterborne Cd challenge, GFR and UFR were affected transiently, and only Mg(2+) and protein excretion remained elevated with no recovery with time in Cd-acclimated trout. Urinary Ca(2+) and Zn(2+) excretion rates dropped with an indication of renal compensation towards plasma declines of both ions. Cadmium challenge did not cause any notable effects on urinary excretion rates of metabolites. However, a significant decrease in Mg(2+) reabsorption but an increase in total ammonia secretion was observed in the Cd-acclimated fish. The study suggests that dietary Cd acclimation involves physiological costs in terms of renal dysfunction and elevated urinary losses.  相似文献   

17.
The effect of water deprivation for 19 h on renal Na excretion of conscious adrenalectomized (ADX) sheep maintained on a constant intravenous infusion of aldosterone and cortisol (ADX-constant steroid sheep) was investigated. Both ADX and normal sheep showed large increases in renal Na excretion when they were deprived of water. ADX-constant steroid sheep also exhibited a normal postprandial natriuresis 3-6 h after feeding, whether or not water was available to drink. In another experiment, sheep deprived of water for 41 h were then allowed to drink water. Both normal and ADX-constant steroid sheep exhibited a large reduction of renal Na excretion in the 6 h after rehydration. Changes in plasma Na and K concentration and osmolality were similar in normal and ADX-constant steroid sheep during periods of dehydration and rehydration. These results show that change in aldosterone secretion is not a major factor in causing either dehydration-induced or postprandial natriuresis. Neither is it a major cause of rehydration-induced renal Na retention.  相似文献   

18.
To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.  相似文献   

19.
The scale-less carp (Gymnocypris przewalskii) inhabits Lake Qinghai located on the Qinghai-Tibet plateau (elevation, 3200 m) in western China. The lake waters are alkaline (pH 9.4, titratable alkalinity=30 mmol l(-1)), Mg(2+)-rich (18.7 mmol l(-1)), Ca(2+)-poor (0.30 mmol l(-1)) and saline (9 per thousand ). These fish make annual spawning migrations into freshwater rivers. We investigated the physiology of nitrogen excretion and ionoregulation of fish from the lake and river. Fish from both waters were ammonotelic, although ammonia-N excretion rates were lower in lake fish (175 vs. 344 micromol kg(-1) h(-1), P<0.05) resulting in unusually high levels of ammonia in blood plasma (2.23 vs. 0.32 mmol l(-1)), bile, liver, muscle and brain. Exposure to 0.4 mmol l(-1) total ammonia in lake water ([NH(3)]=0.16 mmol l(-1)) killed fish within 8 h. River fish survived exposure to 1.0 mmol l(-1) total ammonia in river water at pH 8.0 ([NH(3)]=0.023 mmol l(-1)) for 24 h suggesting high ammonia tolerance in lake fish. High glutamate dehydrogenase and glutamine synthetase activities in tissues probably allow the fish to alleviate ammonia toxicity by amino acid accumulation. Neither lake nor river fish relied on urea excretion to remove excess N. Urea-N excretion rates were below 20 micromol kg(-1) h(-1) for both groups, and levels of urea in plasma and tissues were moderate. When exposed to elevated ammonia, urea-N excretion increased slightly (approximately 50 micromol kg(-1) h(-1)) and liver and muscle urea levels increased in the river fish. Plasma ion levels were within the range typical of cyprinids, but river fish had significantly higher plasma [Na(+)] and [Cl(-)] and lower [K(+)] than fish from the lake. During 48-h lake-to-river water transfer, plasma Na(+) and Cl(-) levels rose significantly. Significantly higher Na(+)/K(+)-ATPase activity in the gills of river fish may be related to the higher plasma ion levels. Plasma [Mg(2+)] and [Ca(2+)] were tightly regulated despite the great differences in the lake and river water levels.  相似文献   

20.
The major purpose of this study was to determine whether acute or chronic Pb exposure would increase urinary excretion of zinc in the rat. Four groups of unanesthetized rats were given 0, 0.03, 0.3, or 3 mg Pb (as acetate) kg intravenously, and urinary excretion of zinc, sodium, and potassium was monitored for 6 h. Only at the highest dose was urinary Zn excretion significantly elevated; there were no significant changes in sodium and potassium excretion at any dose. Two other groups of rats were studied for 9 weeks in metabolism cages before and during administration of either 500 ppm Pb (as acetate) or equimolar Na acetate in the drinking water. Two days after Pb treatment and continuing through day 35, Zn excretion was elevated in the Pb-exposed animals; beyond this day, zinc excretion became similar in the two groups. The difference in Zn excretion was not the result of lower water intake by the Pb-treated animals. At sacrifice (70 days after starting Pb exposure), Pb-exposed animals had lower Zn content of the plasma and testis, but there was no difference in kidney Zn. Plasma renin activity was significantly higher in Pb-exposed animals. We conclude that chronic Pb exposure in rats can result in some degree of decreased tissue zinc, which is, at least in part, secondary to increased urinary losses of zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号