首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

2.
The monoicous peatmoss Sphagnum subnitens has a tripartite distribution that includes disjunct population systems in Europe (including the Azores), northwestern North America and New Zealand. Regional genetic diversity was highest in European S. subnitens but in northwestern North America, a single microsatellite‐based multilocus haploid genotype was detected across 16 sites ranging from Coos County, Oregon, to Kavalga Island in the Western Aleutians (a distance of some 4115 km). Two multilocus haploid genotypes were detected across 14 sites on South Island, New Zealand. The microsatellite‐based regional genetic diversity detected in New Zealand and North American S. subnitens is the lowest reported for any Sphagnum. The low genetic diversity detected in both of these regions most likely resulted from a founder event associated with vegetative propagation and complete selfing, with one founding haploid plant in northwest North America and two in New Zealand. Thus, one plant appears to have contributed 100% of the gene pool for the population systems of S. subnitens occurring in northwest North America, and this is arguably the most genetically uniform group of plants having a widespread distribution yet detected. Although having a distribution spanning 12.5° of latitude and 56° of longitude, there was no evidence of any genetic diversification in S. subnitens in northwest North America. No genetic structure was detected among the three regions, and it appears that European plants of S. subnitens provided the source for New Zealand and northwest North American populations.  相似文献   

3.
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.  相似文献   

4.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

5.
Invasive species’ success may depend strongly on the genetic resources they maintain through the invasion process. We ask how many introductions have occurred in the North American weed Centaurea stoebe micranthos (Asteraceae), and explore whether genetic diversity and population structure have changed as a result of introduction. We surveyed individuals from 15 European native range sites and 11 North American introduced range sites at six polymorphic microsatellite loci. No significant difference existed in the total number of alleles or in the number of private alleles found in each range. Shannon–Weaver diversity of phenotype frequencies was also not significantly different between the ranges, while expected heterozygosity was significantly higher in the invasive range. Population structure was similar between the native range and the invasive range, and isolation by distance was not significant in either range. Traditional assignment methods did not allocate any North American individuals to the sampled European populations, while Bayesian assignment methods grouped individuals into nine genetic clusters, with three of them shared between North America and Europe. Invasive individuals tended to have genetically admixed profiles, while natives tended to assign more strongly to a single cluster. Many North American individuals share assignment with Romania and Bulgaria, suggesting two separate invasions that have undergone gene flow in North America. Samples from three other invasive range sites were genetically distinct, possibly representing three other unique introductions. Multiple introductions and the maintenance of high genetic diversity through the introduction process may be partially responsible for the invasive success of C. stoebe micranthos.  相似文献   

6.
The contemporary distribution of genetic variation within and among high latitude populations cannot be fully understood without taking into consideration how species responded to the impacts of Pleistocene glaciations. Broad whitefish, Coregonus nasus, a species endemic to northwest North America and the Arctic coast of Russia, was undoubtedly impacted by such events because its geographic distribution suggests that it survived solely within the Beringian refuge from where it dispersed post‐glacially to achieve its current range. We used microsatellite DNA to investigate the role of glaciations in promoting intraspecific genetic variation in broad whitefish (N = 14 localities, 664 fish) throughout their North American range and in one Russian sample. Broad whitefish exhibited relatively high intrapopulation variation (average of 11.7 alleles per locus, average HE = 0.61) and moderate levels of interpopulation divergence (overall FST = 0.10). The main regions assayed in our study (Russia, Alaska, Mackenzie River and Travaillant Lake systems) were genetically differentiated from each other and there were declines in genetic diversity with distance from putative refugia. Additionally, Mackenzie River system populations showed less developed and more variable patterns of isolation‐by‐distance than populations occupying former Alaskan portions of Beringia. Finally, our data suggest that broad whitefish dispersed from Beringia using coastal environments and opportunistically via headwater stream connections that once existed between Yukon and Mackenzie River drainages. Our results illustrate the importance of history (e.g. glaciation) and contemporary dispersal ecology in shaping the current genetic population structure of Arctic faunas.  相似文献   

7.
The cave swallow (Petrochelidon fulva) is a polytypic species with isolated populations in northwestern South America, southwestern North America, Yucatan, Greater Antilles, and Florida. We compared microsatellite genotypes of at least five individuals each from five populations and cytochrome b sequence data of two individuals each from seven populations plus two outgroups. Microsatellite allelic diversity was substantial, and the North American populations were about equally variable. In contrast, the Ecuadorian population had far less genetic variation. Gene flow was apparent among populations, especially between Texas and Florida. Genetic structure was greater than in widespread North American species but less than that of sedentary Neotropical birds. Microsatellite genetic distances indicated a close affinity between Ecuadorian and northern populations, especially Texas and Florida, but this finding was inconsistent with cytochrome b data, which indicated that the Ecuadorian population is the clear outgroup to the northern populations. Its outgroup status is consistent with recent classifications that designate South American populations as their own species (P. rufocollaris). The cytochrome b data further suggested that the northern populations are divided into two clades: Texas/Yucatan and Florida/Greater Antilles. The microsatellite data incorrectly measured the diversity and affinities of Ecuadorian birds apparently because of an ascertainment bias that results from the use of heterologous PCR primers. Despite these problems in measuring phylogenetic relationships, the microsatellite data appeared to work well as a population genetic marker in indicating population structure and gene flow.  相似文献   

8.
Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (~40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20?000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (?(ST) = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (F(ST) = 0.021) as well as within North America (F(ST) = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10(-4)). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides.  相似文献   

9.
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi‐Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best‐fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi‐Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans‐Atlantic geographic framework.  相似文献   

10.
I isolated the first set of polymorphic microsatellite markers from the house finch, Carpodacus mexicanus, a well‐studied North American bird species, as part of an effort to compare levels of genetic diversity in introduced and native populations. Here, I describe eight independently assorting microsatellite loci screened for polymorphism using 40 house finches. Polymorphism levels ranged from six to 14 alleles (mean = 10.6), making these markers a powerful tool for paternity and population level analyses of this widely distributed North American species.  相似文献   

11.
Genomic ancestry of the American puma (Puma concolor)   总被引:4,自引:0,他引:4  
Puma concolor, a large American cat species, occupies the most extensive range of any New World terrestrial mammal, spanning 110 degrees of latitude from the Canadian Yukon to the Straits of Magellan. Until the recent Holocene, pumas coexisted with a diverse array of carnivores including the American lion (Panthera atrox), the North American cheetah (Miracynonyx trumani), and the saber toothed tiger (Smilodon fatalis). Genomic DNA specimens from 315 pumas of specified geographic origin (261 contemporary and 54 museum specimens) were collected for molecular genetic and phylogenetic analyses of three mitochondrial gene sequences (16S rRNA, ATPase-8, and NADH-5) plus composite microsatellite genotypes (10 feline loci). Six phylogeographic groupings or subspecies were resolved, and the entire North American population (186 individuals from 15 previously named subspecies) was genetically homogeneous in overall variation relative to central and South American populations. The marked uniformity of mtDNA and a reduction in microsatellite allele size expansion indicates that North American pumas derive from a recent (late Pleistocene circa 10,000 years ago) replacement and recolonization by a small number of founders who themselves originated from a centrum of puma genetic diversity in eastern South America 200,000-300,000 years ago. The recolonization of North American pumas was coincident with a massive late Pleistocene extinction event that eliminated 80% of large vertebrates in North America and may have extirpated pumas from that continent as well.  相似文献   

12.
The red clover casebearer, Coleophora deauratella, is an invasive pest of red clover grown for seed in North America. In 2006, an outbreak in Alberta, Canada was discovered that resulted in significant seed losses, while further invasion threatens the world’s largest red clover forage seed production region in Oregon, USA. Prior to the recent outbreak, C. deauratella was thought to be restricted to eastern North America in its invasive range. We sequenced a 615-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene, and developed three microsatellite markers to assess the genetic diversity and population structure of C. deauratella in North America and its native range in Europe. We observed signatures of a founder effect in North American populations and a further loss of genetic diversity within Alberta populations. Most genetic differentiation was found between continents, with no evidence of isolation-by-distance within each continent. From the limited number of European populations sampled, a single introduction from Switzerland is the most probable source of North American populations based on similar mitochondrial diversity and lack of population differentiation. Within North America, based on increased genetic diversity compared to the rest of the continent, the first North American record from Ithaca, NY, and the first documented outbreak in southern Ontario in 1989, the initial C. deauratella invasion most likely occurred in southern Ontario, Canada or adjacent states in the USA, followed by transport throughout the continent. This study provides insight into the phylogeographic history of C. deauratella in North America and Europe and may help to identify a regional source of future classical biological control agents.  相似文献   

13.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

14.
The geographical range of the five‐lined skink is the most expansive of any eastern North American lizard, ranging from previously glaciated southern Canada southward to the Gulf of Mexico and from the Atlantic seaboard west to Texas and Minnesota. The most northerly populations occur in southern Ontario and are of conservation concern. We developed six polymorphic dinucleotide microsatellite loci to examine the genetic structure within and among Ontario's populations and to examine the intrapopulation levels of genetic diversity relative to more southern populations.  相似文献   

15.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

16.
The alfalfa leafcutting bee, Megachile rotundata (ALCB) is an economically important pollinator necessary for seed production of the critical forage crop alfalfa, Medicago sativa. The pollinator was accidentally introduced to North America from Europe approximately 70 years ago, and it is primarily produced in Canada and shipped to the United States annually en masse for seed field pollination. We investigate how the large-scale commercial movement of this bee affects the genetic structure of populations in the North American seed growing system and compare the genetic diversity and structure of introduced North American bees with two native European populations. Using 16 newly developed microsatellite loci, we describe the North American population structure of this bee. ALCBs collected from alfalfa seed farms have a degree of genetic variability similar to one native European population, but lower than the second. Considering that the species was accidentally introduced into North America, we anticipated more signature of a founder effect. Despite the level of genetic variability, we found little, if any, genetic structuring across North America, other than that the North American populations were distinct from the European populations sampled. While we detected some sub-structure in North American populations using Bayesian methods, the structuring was without geographic pattern, and we propose it is the result of the intense human management and movement of these bees. The trade and movement of these bees by humans has created a nearly panmictic M. rotundata population across the continent, which has implications relevant to the preservation and conservation of other bee pollinators.  相似文献   

17.
Aim Canada thistle (Cirsium arvense– Cardueae, Asteraceae) is one of the worst invasive plants world‐wide. Native to Eurasia, its unintentional introduction into North America now threatens the native flora and is responsible for enormous agricultural losses. The goals of this study are to: (1) reconstruct the evolutionary history of C. arvense and estimate how often it may have colonized North America, (2) compare the genetic diversity between European and North American populations to detect signs of demographic bottlenecks and/or patterns of population admixture, and (3) conduct bioclimatic comparisons to infer eventual niche shifts following this species’ introduction into North America. Location Europe and North America. Methods A total of 1522 individuals from 58 populations were investigated with six microsatellite markers. Estimates of heterozygosity (HE) and allelic richness (RS) were quantified for each population, and population structure was inferred via analyses of molecular variance (AMOVAs), principal components analyses (PCAs), Mantel tests and Bayesian clustering analyses. Climatic niche spaces were based on 19 bioclimatic variables extracted from approximately 32,000 locations covering the entire range, and compared using PCA and hierarchical cluster analysis. Results Although there is evidence of multiple introductions from divergent European lineages, North American populations of C. arvense exhibited significantly lower levels of genetic diversity than their putative ancestors. Bioclimatic comparisons pointed to a high degree of niche conservatism during invasion, but indicated that genotypes from the former USSR and Central European mountain chains were probably best adapted to invade North America upon entry into the continent. Main conclusions Genetic and historical data suggest that C. arvense first entered North America from Western Europe with the first European settlers, and was later introduced from Eastern Europe into the prairie states during the agricultural boom. The species went through a significant bottleneck following its introduction into the New World, but the level of genetic diversity remained high owing to admixture between genetically differentiated lineages and to a highly efficient outcrossing breeding system.  相似文献   

18.
Reintroduction of terrestrial vertebrates with the goal of ecosystem restoration typically establishes small and isolated populations that may experience reduced genetic variability due to founder effects and genetic drift. Understanding the genetic structure of these populations and maintaining adequate genetic diversity is important for long‐term restoration success. We quantified genetic variability at six microsatellite loci for a reintroduced population of Cervus elaphus (elk) restored to the tallgrass prairie ecosystem of northeastern Kansas. Allelic richness, observed and expected heterozygosity were intermediate to levels reported in other North American elk populations. Current levels of genetic variability in restored North American elk populations were not well explained by founding population size, number of founding populations, or number of years since the last translocation. Simulation results suggest that the retention of genetic variability in isolated populations is strongly influenced by mating system while also being impacted by temporal variability in population size and population growth rate. Our results have implications for understanding how translocation strategies and post‐reintroduction management may influence genetic variability in restored populations.  相似文献   

19.
Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch''s ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.  相似文献   

20.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号