首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antennal and behavioural response of three tortricid species (Lepidoptera: Tortricidae) to their corresponding sex pheromones and known or putative behavioural antagonists was tested by electroantennography and in field trials. The species and their pheromones and known or proposed behavioural antagonist were lightbrown apple moth, Epiphyas postvittana (Walker) [pheromone: 95% (E)‐11‐tetradecenyl acetate (E11‐14Ac) and 5% (E,E)‐9,11‐tetradecadienyl acetate (E9E11‐14Ac); antagonist: (Z)‐11‐tetradecenyl acetate (Z11‐14Ac)], codling moth, Cydia pomonella (L.) [pheromone: (E,E)‐8,10‐dodecadien‐1‐ol (codlemone); antagonist: (E,E)‐8,10‐dodecadienyl acetate (codlemone acetate)], and gorse pod moth, Cydia ulicetana (Haworth) [pheromone: (E,E)‐8,10‐dodecadienyl acetate (codlemone acetate); putative antagonist: (E,E)‐8,10‐dodecadien‐1‐ol (codlemone)]. In all three species, the antennal response to the antagonists was not significantly different from the antennal response to con‐specific sex pheromone compounds. In the field trapping experiments, significantly fewer males of all three species were attracted to the respective pheromone when blended with the behavioural antagonist compound. However, this response varied between the species, with lightbrown apple moth and codling moth showing stronger responses to the antagonist compounds than gorse pod moth. Both lightbrown apple moth and codling moth males were able to discriminate between pure pheromone and pheromone blended with the antagonist when placed in traps side‐by‐side separated by ca. 10 cm. The presence of the behavioural antagonist not only affected the catch of males of both species within their own traps but also affected the catch in the neighbouring trap that contained con‐specific sex pheromone; the catch of gorse pod moth was not reduced by the presence of codlemone in the neighbouring trap. These results suggest that strong behavioural antagonists such as codlemone acetate for codling moth and Z11‐14Ac for lightbrown apple moth induce their inhibition effect at a substantial distance downwind from the odour source; however, most of those males that were able to overcome this inhibition effect at the early stage of orientation to odour source, were able to discriminate between the pheromone source and the pheromone source admixed with behavioural antagonist. Moderate behavioural antagonists such as codlemone for gorse pod moth did not elicit a discrimination effect.  相似文献   

2.
3.
Abstract In Brassicaceae, myrosinase catalyzes the hydrolysis of glucosinolate and plays an important role in anti‐herbivore defense. We have cloned and characterized the full‐length complementary DNA of myrosinase gene from Brassica parachinensis that exhibits high sequence identity with myrosinase genes from other Brassica species. To investigate the role of this myrosinase in defense against the diamondback moth (Plutella xylostella), we constructed an RNA‐interference (RNAi) cassette expressing a double‐stranded RNA that targeted myrosinase and transfected it into B. parachinensis. Myrosinase was suppressed in the resulting transgenic plants. Diamondback moth larvae feeding on transgenic plants had lower larval and pupal weights, longer pupal duration, and lower fecundity than those feeding on non‐transgenic plants, suggesting that the diamondback moth has adapted to the glucosinolate‐myrosinase defensive system. Therefore, the suppression of myrosinase is a potential approach for controlling the diamondback moth.  相似文献   

4.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

5.
Mechanisms of host plant resistance against insect pests can be manifold. Resistance screenings generally use single target insect pests, but the resistance thus screened may not always be specific to the target insect species. We conducted a test for non‐specific resistance in indica rice varieties with resistance genes against brown planthopper (BPH), by using the Indian meal moth, Plodia interpunctella. The test system was very simple, and only required the non‐pest moth to be reared on rice flour. We compared the survival rate, developmental period and adult weight of the moth on three rice varieties: ‘Nipponbare’, a BPH‐susceptible japonica variety, and ‘Thai Collection 11’ and ‘Pokkali’, two resistant indica varieties. Our results were straightforward and demonstrate that resistance in the two resistant rice varieties is not BPH specific, because development of the moth was retarded and adult body weight was reduced.  相似文献   

6.
Abstract 1 Two codling moth Cydia pomonella kairomonal attractants, ethyl (E,Z)‐2,4‐decadienoate (pear ester) and (E)‐β‐farnesene, were tested in an insecticide‐sprayed apple orchard and an orchard treated for mating disruption with synthetic pheromone (E,E)‐8,10‐dodecadienol (codlemone). Male captures with pear ester were higher in the pheromone‐treated than in the insecticide‐treated orchard, whereas captures with (E)‐β‐farnesene were not different. Subsequent wind tunnel experiments confirmed that pre‐exposure to sex pheromone codlemone increased the behavioural response of codling moth males to pear ester. This supports the idea that male attraction to the plant volatile pear ester and sex pheromone codlemone is mediated through the same sensory channels. 2 Pear ester is a bisexual codling moth attractant and even captures of female moths were significantly increased in the pheromone‐treated orchard. In the laboratory wind tunnel, pheromone pre‐exposure had no effect on female response to pear ester, but significantly more mated than unmated codling moth females flew upwind towards a pear ester source. Differences in mating status in insecticide‐treated vs. pheromone‐treated orchards may thus account for the differences in female trap captures with pear ester. 3 These findings are important with respect to monitoring of codling moth with pear ester in mating disruption orchards. They also emphasize the importance of host plant volatiles in pheromone‐mediated mating disruption, which has been neglected to date.  相似文献   

7.
Two different methods were tested to identify the sex of the early developmental stages of the codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) with a WZ/ZZ (female/male) sex chromosome system. First, it was shown that the sex of all larval stages can be easily determined by the presence or absence of sex chromatin, which is formed by the female‐specific W chromosome in interphase nuclei. This trait can also be used to identify the sex of newly hatched larvae but it does require care and accuracy. Secondly, a new sexing technique was developed based on a molecular marker of the codling moth W chromosome. Flanking regions of an earlier described W‐specific sequence (CpW2) were isolated and sequenced and a 2.74 kb sequence (CpW2‐EcoRI), specific for the W chromosome, was obtained. Several PCR tests were conducted, which confirmed that the CpW2‐EcoRI sequence is a reliable marker for the sex identification in codling moth samples of different geographical origin. In addition, a fragment of a codling moth gene, period (Cpper) was isolated and sequenced. Results of southern hybridization of the Cpper probe with female and male genomic DNA suggested that the Cpper gene is located on the Z chromosome. Then a multiplex PCR assay was developed, which co‐amplified the CpW2‐EcoRI sequence to identify the W chromosome and the Z‐linked Cpper sequence, which served as a positive control of accurate processing of tested samples. The multiplex PCR provides an easy and rapid identification of the sex of embryos and early larval instars of the codling moth.  相似文献   

8.
9.
Recent large‐cage studies with codling moth Cydia pomonella (L.) reveal that the removal of moths from an apple orchard using pheromone‐releasing traps is more effective at reducing capture in a central monitoring trap than is a mating disruption protocol without kill/capture. The present study uses open orchard 0.2‐ha plots comparing a high‐density trapping scenario with mating disruption to confirm those results. Two tortricid moth pests of tree fruit are studied: codling moth and obliquebanded leafroller Choristoneura rosaceana (Harris). Codling moth treatments include Isomate CM FLEX (ShinEtsu Ltd, Japan), nonsticky traps baited with Trécé CM lures (Trécé, Inc., Adair, Oklahoma), and sticky traps baited with Trécé CM lures, all at equal application rates of 500 dispensers ha?1, as well as a no pheromone control. These microtraps are of a novel design, small and easy to apply, and potentially inexpensive to produce. Mating disruption using Isomate CM FLEX and nonsticky traps reduces codling moth capture in standard monitoring traps by 58% and 71%, respectively. The attract‐and‐remove treatment with sticky traps reduces capture by 92%. Obliquebanded leafroller treatments include Isomate OBLR/PLR Plus and Pherocon IIB microtraps baited with Trécé OBLR lures, both applied at 500 dispensers ha?1, as well as a no pheromone control. Mating disruption reduces capture in monitoring traps by 69%. The attract‐and‐remove treatment reduces capture by 85%. Both studies suggest that an attract‐and‐remove approach has the potential to provide superior control of moth populations compared with that achieved by mating disruption operating by competitive attraction.  相似文献   

10.
1. Both direct and indirect competition can have profound effects on species abundance and expansion rates, especially for a species trying to strengthen a foothold in new areas, such as the winter moth (Operophtera brumata) currently in northernmost Finland. There, winter moths have overlapping outbreak ranges with autumnal moths (Epirrita autumnata), who also share the same host, the mountain birch (Betula pubescens ssp. czerepanovii). Competitive interactions are also possible, but so far unstudied, are explanations for the observed 1–3 years phase lag between the population cycles of the two moth species. 2. In two field experiments, we studied host plant‐mediated indirect inter‐specific competition and direct interference/exploitation competition between autumnal and winter moths. The experimental larvae were grown either with the competing species or with the same number of conspecifics until pupation. Inter‐specific competition was judged from differences in pupal mass (reflecting lifespan fecundity), larval development time and larval survival. 3. Larval performance measurements suggested that neither direct nor indirect inter‐specific competition with the autumnal moth reduce the growth rate of winter moth populations. Winter moths even had a higher probability of survival when reared together with autumnal moths. 4. Thus, we conclude that neither direct nor indirect inter‐specific competition is capable of suppressing the spread of the winter moth outbreak range and that both are also an unlikely cause for the phase lag between the phase‐locked population cycles of the two moth species.  相似文献   

11.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

12.
The ash leaf cone roller Caloptilia fraxinella Ely (Lepidoptera: Gracillariidae) is an invasive leaf‐mining moth pest of horticultural ash Fraxinus spp. in the Canadian Prairie Provinces. Caloptilia fraxinella overwinter as adults in reproductive diapause and mating occurs after overwintering in the spring. The effect of a carbohydrate food source on fat and glycerol reserves throughout the long adult life stage of this moth is investigated. Insects collected as pupae are given access to either water or sugar water upon adult eclosion. Moths held under the different feeding regimes are sampled before (summer and autumn) and after overwintering in the spring. Analysis of either glycerol or lipid content is conducted for male and female moths from each collection period. Both moth weight and glycerol concentration are affected by moth sex, food regime and season of collection. Although female moths are heavier than males, a higher glycerol concentration occurs in males. Moths fed sugar are heavier and have a higher glycerol concentration than water‐fed moths late in reproductive diapause and after overwintering. Moths collected in the spring after overwintering are lighter and have a lower glycerol content than moths collected before winter. There is a significant influence of feeding regime and season on moth body lipid content, with sugar‐fed moths having more fat than water‐fed moths; however, this difference is smaller in the summer than the autumn or spring. An initial understanding of the overwintering biology and diapause of this pest is provided in the present study.  相似文献   

13.
We evaluated the effectiveness of 2‐phenylethanol (PET) in combination with acetic acid (AA) as a binary lure for monitoring male and female obliquebanded leafroller, Choristoneura rosaceana (Harris). Studies were conducted in apple, Malus domestica Borkhausen, orchards treated with or without sex pheromone dispensers for mating disruption (MD). Open polypropylene vials, closed membrane cups, and rubber septa loaded with AA and/or PET in varying amounts were first evaluated in a series of trapping experiments. Membrane cups loaded with 800 mg of PET were as effective as 10‐mg septa, but longer lasting, and were comparable to the open vials. A membrane cup AA lure was effective in tests, but further work is needed to increase its release rate and extend its activity. Catches of codling moth, Cydia pomonella (L.), and C. rosaceana were unaffected by combining PET with (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone of codling moth, pear ester, (E,Z)‐2,4‐ethyl‐decadienoate and AA lures. Adding (E)‐4,8‐dimethyl‐1,3,7‐nonatriene to this blend to enhance codling moth catch significantly reduced catches of C. rosaceana. PET + AA was a more attractive binary lure than AA plus phenylacetonitrile (PAN) for C. rosaceana. The addition of PET or PAN to traps already baited with the sex pheromone of C. rosaceana significantly reduced male catches. Traps baited with PET + AA placed in blocks not treated with MD caught significantly fewer C. rosaceana than traps baited with sex pheromone. In comparison, sex pheromone‐baited traps in MD blocks caught ≤1 male moth per season which was significantly lower than total moth (>10) or female moth (≥3) catch in these blocks with PET + AA. A high proportion (>70%) of trapped females were mated in both untreated and MD‐treated orchards. Further refinement of this binary, bisexual lure using membrane cup technology may allow the establishment of action thresholds and improve management timings for C. rosaceana.  相似文献   

14.
Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 to 2017. Trials evaluated various blends loaded into either membrane cup lures or septa. Membrane lures were loaded with terpinyl acetate (TA), acetic acid (AA) and (Z)‐3‐hexenyl acetate alone or in combinations. Two septa lures were loaded with either the three‐component sex pheromone blend for G. molesta alone or in combination with codlemone (2‐PH), the sex pheromone of Cydia pomonella (L). A third septum lure included the combination sex pheromone blend plus pear ester, (E,Z)‐2,4‐ethyl decadienoate (2‐PH/PE), and a fourth septum was loaded with only β‐ocimene. Results were consistent across geographical areas showing that the addition of β‐ocimene or (Z)‐3‐hexenyl acetate did not increase moth catches. The addition of pear ester to the sex pheromone lure marginally increased moth catches. The use of TA and AA together significantly increased moth catches compared with the use of only one of the two components. Traps with the TA/AA lure outperformed the Ajar trap baited with a liquid TA plus sugar bait. The emission rate of AA was not a significant factor affecting the performance of the TA/AA lure. The addition of TA/AA significantly increased moth catches when combined with the 2‐PH lure. The TA/AA lure also allowed traps to catch both sexes. Catch of C. pomonella with the 2‐PH lure was comparable to the use of codlemone; however, moth catch was significantly reduced with the 2‐PH/PE lure. Optimization of these complex lures can likely further improve managers’ ability to monitor G. molesta and help to develop multispecies tortricid lures for use in individual traps.  相似文献   

15.
Previous studies have shown that the addition of an acetic acid colure (AA) to traps baited with pear ester, (E,Z)‐2,4‐ethyl‐decadienoate, and codlemone, (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone (PH) of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), (Combo lure) can significantly increase moth catches. A commercial AA colure was developed to be used with the Combo lure using a specialized cardboard lure holder. However, research in 2011 suggested that the addition of the AA colure placed in the holder was reducing moth catches. Studies were subsequently conducted in both North America and South America to examine the factors affecting these unexpected results. Hanging the AA colure from the inside top of the delta trap was found to be a primary factor reducing moth catches of male but not female codling moth. Significantly, more males were caught if the AA colure was placed on the sticky liner of the trap than in the holder. Laboratory and field studies found that this negative effect on moth catches lessens over time with aged AA colures that had lower emission rates. The position of the holder in the trap (upwind or downwind) relative to the direction where moths approached was not a significant factor affecting moth catch with the AA colure. However, the spacing of the lures on the holder was an important factor with significantly higher male catches with lures 5.5 cm apart and the AA lure above the Combo lure than with lures 1.5 cm apart and the Combo lure above the AA lure. Similarly, pinning the Combo lure to the roof of the trap was more effective than the use of the holder with the AA lure on the liner. Standardization of lure placement will be important to fully utilize the use of bisexual, multilure monitoring systems for codling moth and likely for other pests.  相似文献   

16.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

17.
Over the last 10 years, the use of nets to protect pome fruit from hailstorms has increased. In this study, we investigated the effect of these nets on the behavior of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a major pest of apple, Malus domestica Borkh. (Rosaceae). Experiments were carried out in net‐covered and uncovered apple orchards treated with conventional insecticides. The number of codling moth males caught in pheromone‐ and virgin female‐baited traps was significantly reduced in net‐covered compared to uncovered plots. In addition, inhibition of mating by the net was demonstrated by significant reductions in mating of tethered virgin females. Fruit injury was consistently lower in net‐covered plots vs. uncovered plots. Because of the reductions in male trap catch, the reduced female mating frequency, and the lower level of damage, we conclude that flat anti‐hail nets have a disruptive effect on the reproductive behavior of the codling moth.  相似文献   

18.
James R. Reilly  Ann E. Hajek 《Oikos》2012,121(8):1311-1316
The Lymantria dispar nucleopolyhedrovirus (LdNPV) is one of the most important regulators of gypsy moth populations, but some aspects of its transmission remain poorly understood, particularly its high rate of spatial spread and ability to persist in low‐density populations. We tested the role of predatory birds in the transmission of this virus using experimental gypsy moth populations in an aviary. Predatory birds captured virus‐infected caterpillars and facilitated viral dispersal via two processes: 1) by ingesting infected caterpillars and passing viral occlusion bodies (OBs) through their guts, and 2) by scattering OBs during predator‐specific processing behaviors, a mechanism documented here for the first time. The relative importance of both pathways differed by predator species. After eating virus‐infected gypsy moth larvae, red‐eyed vireos and black‐capped chickadees passed more gypsy moth nucleopolyhedrovirus in feces than did gray catbirds. During prey‐processing, the repetitive beating of caterpillars by red‐eyed vireos, a behavior that was rarely utilized by chickadees and catbirds, resulted in the scattering of infectious virus. Due to the combination of efficient gut passage and virus spread from prey beating, higher rates of transmission occurred in experimental gypsy moth populations exposed to red‐eyed vireos than those exposed to catbirds or chickadees. Our results show that effective virus transmission was achieved when virus was vectored by predatory birds through a combination of both behavioral and physiological traits.  相似文献   

19.
Gypsy moth, Lymantria dispar L., is one of the most important pests of deciduous trees in Europe. In regular cycles, it causes large‐scale defoliation mostly of oak, Quercus spp., forests. Government authorities in the most infested countries in Europe conduct large‐scale applications of pesticides against gypsy moth. In 1999, a new natural enemy, the entomopathogenic fungus Entomophaga maimaiga, was successfully introduced into a gypsy moth population in Bulgaria. Recent investigations suggest that now E. maimaiga is quickly spreading in Europe. Herein, past studies are reviewed regarding this fungus with special emphasis on its potential for becoming an important factor regulating gypsy moth populations in Europe, focusing on the host's population dynamics in relation to the fungus, the influence of environmental conditions on fungal activity, the influence of E. maimaiga on the native entomofauna, including other gypsy moth natural enemies, and spread of the fungus. Based on this analysis, the potential of E. maimaiga for providing control in European gypsy moth populations is estimated.  相似文献   

20.
The nun moth, Lymantria monacha L., is one of the most important defoliators of Eurasian coniferous forests. Outbreaks during 2011–2015 in the natural/planted larch, and larch‐birch mixed forests of the Greater Khingan Range in Inner Mongolia, China, caused tremendous timber losses from severe defoliation and tree mortality. A series of trapping experiments were conducted in these outbreak areas to evaluate the efficacy of a synthetic species‐specific pheromone lure based on the female pheromone blend of European nun moth populations. Our results clearly show that the nun moth in Inner Mongolia is highly and specifically attracted to this synthetic pheromone, with few gypsy moths (Lymantria dispar) captured. Flight activity monitoring of L. monacha male moths using pheromone‐baited Unitraps at 2 locations during the summer of 2015 indicated that the flight period started in mid‐July, peaking in early August at both locations. Based on male moth captures, there was a strong diurnal rhythm of flight activity throughout the entire scotophase, peaking between 22:00 and 24:00. Unitraps and wing traps had significantly and surprisingly higher catches than the gypsy moth traps. Unitraps fastened to tree trunks 2 m above ground caught significantly more male moths than those at the ground level or at 5 m height. Male L. monacha moths can be attracted to pheromone‐baited traps in open areas 150–200 m distant from the infested forest edge. Our data should allow improvement on the performance of pheromone‐baited traps for monitoring or mass‐trapping to combat outbreaks of this pest in northeastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号