首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection pressure on bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), by cotton, Gossypium hirsutum (L.) (Malvaceae), that produces one or more Bacillus thuringiensis Berliner (Bt) proteins is reduced by plantings of non‐Bt refuge cotton that produce non‐selected individuals. However, the contributions of non‐Bt, non‐cotton crop hosts to the overall effective refuge for H. zea on Bt cotton have not been estimated. A 2‐year, season‐long study was conducted in five US cotton‐producing states to assess the spatial and temporal population dynamics and host use of H. zea. Helicoverpa zea larval estimates in commercial crop fields demonstrated that non‐cotton crop hosts, such as maize, Zea mays L. (Poaceae), grain sorghum, Sorghum bicolor (L.) Moench (Poaceae), peanut, Arachis hypogaea L. (Fabaceae), and soybean, Glycine max (L.) Merrill (Fabaceae), collectively support much larger larval populations than cotton throughout the season. Larval populations were almost entirely restricted to maize in the middle part of the season (June and portions of July), and were observed in non‐cotton crop hosts more frequently and typically in larger numbers than in cotton during the period when production would be expected in cotton (July and August). Numbers of H. zea larvae produced in replicated strip trials containing various crop hosts paralleled production estimates from commercial fields. In contrast, the number of H. zea adults captured in pheromone traps at interfaces of fields of Bt cotton and various crop hosts rarely varied among interfaces, except in instances where maize was highly attractive. With the exception of this early season influence of maize, moth numbers were not related to local larval production. These data demonstrate that H. zea adults move extensively from their natal host origins. Therefore, non‐cotton crop hosts, and even relatively distant hosts, contribute significantly to effective refuge for H. zea on Bt cotton. The results presented here demonstrate that substantial natural refuge is present for Bt‐resistance management of H. zea throughout the mid‐South and Southeast portions of the US cotton belt.  相似文献   

2.
Effects of elevated atmospheric CO2 (double‐ambient CO2) on the growth and metabolism of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cry1A(c)], grown in open‐top chambers, were studied. Two levels of CO2 (ambient and double‐ambient) and two cotton cultivars (non‐transgenic Simian‐3 and transgenic GK‐12) were deployed in a completely randomized design with four treatment combinations, and the cotton bollworm was reared on each treatment simultaneously. Plants of both cotton cultivars had lower nitrogen and higher total non‐structural carbohydrates (TNC), TNC:Nitrogen ratio, condensed tannin, and gossypol under elevated CO2. Elevated CO2 further resulted in a significant decrease in Bt toxin level in GK‐12. The changes in chemical components in the host plants due to increased CO2 significantly affected the growth parameters of H. armigera. Both transgenic Bt cotton and elevated CO2 resulted in a reduced body mass, lower fecundity, decreased relative growth rate (RGR), and decreased mean relative growth rate in the bollworms. Larval life‐span was significantly longer for H. armigera fed transgenic Bt cotton. Significantly reduced larval, pupal, and adult moth weights were observed in the bollworms fed elevated CO2‐grown transgenic Bt cotton compared with those of bollworms reared on non‐transgenic cotton, regardless of the CO2 level. The efficiency of conversion of ingested food and of digested food of the bollworm were significantly reduced when fed transgenic Bt cotton, but there was no significant CO2 or CO2× cotton cultivar interaction. Approximate digestibility of larvae reared on transgenic cotton grown in elevated CO2 was higher compared to that of larvae fed non‐transgenic cotton grown at ambient CO2. The damage inflicted by cotton bollworm on cotton, regardless of the presence or absence of insecticidal genes, is predicted to be more serious under elevated CO2 conditions because of individual compensatory feeding on host plants caused by nitrogen deficiency.  相似文献   

3.
Bacillus thuringiensis (Bt) crops require a high dosage of Bt toxin to delay development of insect resistance, in particular, when the refuge strategy is applied. This strategy is threatened by plant developmental and environmental factors that might reduce Bt toxin concentration and Bt efficacy in Bt crops. Growth of Bt (Cry1Ac) cotton under prolonged, moderate water deficit as a single stress factor was evaluated. Bt cotton plants were analysed for physiological performance, Bt toxin concentration and Bt efficacy. For performance analysis, leaf and total plant dry weight and leaf area were measured. Bt toxin concentration was determined by an immuno‐assay. Effects of Bt toxin on growth and mortality of African cotton bollworm, Helicoverpa armigera, larvae were measured in different plant organs. Leaves from young plants exposed for 30 days to moderate water deficit had both higher Bt toxin concentrations and were more effective against larvae than leaves, flowers or bolls from mature flowering plants exposed to 60 days of moderate water deficit. Although growth of Bt cotton plants under moderate water‐deficit conditions decreased Bt concentrations in leaves, flowers and bolls, this had no effect on efficacy against first‐instar cotton bollworm larvae. No significant evidence was found that moderate water deficit, as a single stress factor, decreases Bt efficacy in Bt cotton.  相似文献   

4.
The cotton bollworm, Helicoverpa armigera, is one of the most important insect pests in cotton growing regions of China. Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been deployed for combating cotton bollworm since 1997. Natural refugees derived from the mixed planting system consisting of cotton, corn, soybean, vegetables, peanut and others on single-family farms of a small scale were used for delaying the evolution of resistance to Bt cotton. Susceptibility of H. armigera field populations to the Bt insecticidal protein Cry1Ac was monitored from 1997 to 2006. The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.  相似文献   

5.
Fitness costs associated with insect resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) reduce the fitness on non-Bt refuge plants of resistant individuals relative to susceptible individuals. Because costs may vary among host plants, choosing refuge cultivars that increase the dominance or magnitude of costs could help to delay resistance. Specifically, cultivars with high concentrations of toxic phytochemicals could magnify costs. To test this hypothesis, we compared life history traits of three independent sets of pink bollworm, Pectinophora gossypiella (Saunders), populations on two cotton cultivars that differed in antibiosis against this cotton pest. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. Confirming previous findings with pink bollworm feeding on cotton, costs primarily affected survival and were recessive on both cultivars. The magnitude of the survival cost did not differ between cultivars. Although the experimental results did not reveal differences between cultivars in the magnitude or dominance of costs, modeling results suggest that differences between cultivars in pink bollworm survival could affect resistance evolution. Thus, knowledge of the interaction between host plants and fitness costs associated with resistance to Bt crops could be helpful in guiding the choice of refuge cultivars.  相似文献   

6.
Producers of Bt cotton, Gossypium hirsutum L. (Malvaceae), in the southeastern USA face significant losses from highly polyphagous stink bug species. These problems may be exacerbated by crop rotation practices that often result in cotton, peanut, Arachis hypogaea L., and soybean, Glycine max (L.) Merrill (both Fabaceae), growing in close proximity to one another. Because all of these crops are hosts for the major pest stink bug species in the region, we experimentally examined colonization preference of these species among the crops to clarify this aspect of their population dynamics. We planted peanut, soybean, Bt cotton, and glyphosate‐tolerant (RR) non‐Bt cotton at three sites over 3 years in replicated plots ranging from 192 to 1 323 m2 and calculated odds ratios for colonization of each crop for Nezara viridula (L.) and Euschistus servus (Say) (both Hemiptera: Pentatomidae). In four of five experiments, both E. servus and N. viridula preferred soybean significantly more often than Bt cotton, non‐Bt cotton, and peanut. Neither N. viridula nor E. servus showed any preference between non‐Bt and Bt cotton in any experiment. Both species had higher numbers in Bt and non‐Bt cotton relative to peanut; this was not significant for any single experiment, but analyses across all experiments indicated that N. viridula preferred Bt and non‐Bt cotton significantly more often than peanut. Our results suggest that soybean in the landscape may function as a sink for stink bug populations relative to nearby peanut and cotton when the soybean is in the reproductive stage of development. Stink bug preference for soybean may reduce pest pressure in near‐by crops, but population increases in soybean could lead to this crop functioning as a source for later‐season pest pressure in cotton.  相似文献   

7.
Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.  相似文献   

8.
食物对棉铃虫生长发育及繁殖的影响   总被引:11,自引:0,他引:11  
侯茂林  盛承发 《昆虫学报》2000,43(2):168-175
用棉花、花生、玉米及人工饲料作为食料,模拟幼虫田间取食习性,同时为雌蛾设立补充和无补充营养两个处理,研究了食物对棉铃虫 Helicoverpa armigera (Hübner) 生长发育及繁殖的影响。4种食料组幼虫历期之间有显著差异;雌、雄蛹重花生组显著小于其余三组。雌蛾腹部干重及其脂肪百分含量与雌蛹体重的排列顺序一样,雌蛾腹部干重人工饲料组显著大于棉花组和花生组。雌蛾寿命和繁殖受幼虫食料和成虫食物的双重影响。喂10%蜂蜜时,雌蛾寿命、交配率和产卵量在四个幼虫食料组之间没有显著差异。但喂以清水时,花生组雌蛾均未交配,寿命和产卵量显著小于其余三组。从同种幼虫食料来看,除人工饲料组外,其余3组雌蛾喂清水时的产卵量和寿命均比喂10%蜂蜜溶液时的显著下降。基于这些结果,作者认为棉花、玉米比花生更适合于棉铃虫的生长发育和繁殖。在田间自然栽培状态下,不同食料植物的糖分含量对棉铃虫生长发育和繁殖影响较大,含氮量的变化影响小。  相似文献   

9.
转基因抗虫棉种植面积变化对花生田棉铃虫种群影响   总被引:1,自引:0,他引:1  
【目的】棉铃虫Helicoverpa armigera(Hübner)是花生田主要害虫之一。转基因抗虫棉全面推广后,棉铃虫种群(包括棉田、花生田、玉米田)得到有效控制。近年,随着转基因抗虫棉种植面积逐年下降,花生田棉铃虫种群呈现逐年上升趋势。【方法】本文通过调查山东省花生主产区(非棉区)龙口、招远、莱阳、文登四个县级市花生田棉铃虫成虫、卵量、幼虫量等的发生情况,分析了棉铃虫发生面积及种群数量15年(2000—2014年)的变化规律,并重点分析了主要影响因素。【结果】结果表明:花生棉铃虫发生面积受棉花种植面积影响较大,二者呈显著负相关性;花生田棉铃虫累计诱蛾量总体呈下降趋势,但与棉花种植面积相关性不显著;棉铃虫卵量、虫量与抗虫棉种植面积呈显著负相关性。【结论】所以,转基因抗虫棉种植面积减少是导致花生田棉铃虫种群数量上升的主要因素。另外,近年玉米田棉铃虫发生面积也呈逐年上升趋势,与抗虫棉种植面积呈显著负相关。所以,随转基因抗虫棉种植面积的下降,若不采取有效措施,棉铃虫种群可能会出现大发生趋势。  相似文献   

10.
We examined the patterns of male pink bollworm (PBW), Pectinophora gossypiella (Saunders), moth catches in gossyplure-baited traps over a 15-year period from 1989 to 2003 in the Imperial Valley, California, USA. Monitoring was conducted during periods when different pink bollworm areawide control strategies were being used. Numbers of male pink bollworm moths caught in gossyplure-baited traps progressively decreased each year from 1990 to 1994 during short-season cotton production. High numbers of male moths caught in traps from 1995 to 1997 may have been related to moth migrations from the large cotton acreages grown in the Mexicali Valley bordering the Imperial Valley. Transgenic Bollgard (Bt) cotton was planted in 3% of the cotton area in 1996 and thereafter in 80%- 94% of the cotton area from 1997 to 2003. Pink bollworm moth trap catches were significantly lower from 1998 to 2003 than catches in 1995 to 1997, except for 1999. The trapping results suggested that Bt cotton had significant input on reduction of pink bollworm populations, confirming results of other investigators and providing additional documentation on the benefits of the Bt cotton culture.  相似文献   

11.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

12.
Bt毒素对棉铃虫雄蛾感受雌蛾性信息素EAG反应的影响   总被引:1,自引:0,他引:1  
穆兰芳  董双林 《昆虫学报》2005,48(3):450-454
用含Bt毒素的人工饲料饲养棉铃虫Helicoverpa armigera 3龄幼虫至成虫(死亡率为40%~50%),采用触角电位 (electroantennogram, EAG) 技术,测定了雄蛾对雌蛾性信息素2种组分顺9-十六碳烯醛(Z9-16:Ald)、顺11-十六碳烯醛(Z11-16:Ald)及其混合物(Z11-16:Ald∶Z9-16:Ald=97∶3)的EAG反应。结果表明,Bt毒素对雄蛾感受性信息素单一组分和混合物的EAG反应均具促进作用;且随信息素剂量的增加,这种促进作用也随之增强。这一结果对于评价和实施延缓棉铃虫对Bt棉抗性的“庇护所"策略,具有一定的参考意义。  相似文献   

13.
  • 1 The allocation of defensive compounds of transgenic Bt (cv. GK‐12) and nontransgenic cotton (cv. Simian‐3) grown in elevated CO2 in response to infestation by cotton bollworm Helicoverpa armigera (Hübner) was studied in closed‐dynamics CO2 chambers.
  • 2 A significant reduction in foliar nitrogen content and Bt toxin protein occurred when transgenic Bt cotton grew under elevated CO2. A significantly higher carbon/nitrogen ratio as well as condensed tannin and gossypol contents was observed for transgenic Bt (cv. GK‐12) and nontransgenic cotton in elevated CO2, in partial support of the carbon nutrient balance hypothesis as a result of limiting nitrogen and excess carbon in cotton plants in response to elevated CO2.
  • 3 The CO2 level and infestation time significantly affected the foliar nitrogen, condensed tannin, gossypol and Bt toxin protein contents of cotton plants after feeding by H. armigera. The interaction between CO2 levels × cotton variety had a significant effect on foliar nitrogen content after injury by H. armigera.
  相似文献   

14.
付雪  叶乐夫  谢宝瑜  戈峰 《生态学报》2011,31(6):1714-1719
玉米等C4植物被认为是华北Bt棉种植区内第三代棉铃虫最重要的天然庇护所,但尚缺乏直接证据。连续2a(2006-2007年)利用杨树把诱集棉铃虫成虫,进行碳稳定同位素比值的测定,并结合棉铃虫成虫捕获时间、虫源的数量比例等,评估C4植物在华北第三代棉铃虫期间的庇护所功能。结果表明,第三代棉铃虫成虫来源于C4植物(玉米)的为40.5%-56.8%,与C3来源的数量上大体相当。但C4来源的成虫羽化时间比C3来源的个体明显滞后,呈现出先少后多的特点。结果提示,C4植物确实是华北第三代棉铃虫重要的庇护所,但存在着时间上与C3来源的成虫交配不同步而失效的风险;结果建议玉米等天然庇护所作物的种植不仅在面积上要足够,而且播种时间上要充分考虑C4植物(玉米)来源的敏感棉铃虫个体的发育与C3植物寄主来源个体的同步性。  相似文献   

15.
Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.  相似文献   

16.
The success of the current resistance management plan for transgenic maize, Zea mays L. (Poaceae), targeting the rootworm complex hinges upon high rates of mating between resistant and susceptible beetles. However, differences in the fitness of adult beetles could result in assortative mating, which could, in turn, change the rate of resistance evolution. Adult head capsule widths of naturally occurring populations of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were examined in a variety of refuge configurations. Beetles were classified into treatments based on the hybrid – non‐Bt refuge or Bt maize targeting larval rootworms (hereafter BtRW maize) – and location – proximity to other Bt‐RW or refuge plants – of the natal host plant. Treatments included the following: a refuge plant surrounded by other refuge plants, a refuge plant located near a BtRW plant, a BtRW plant surrounded by BtRW plants, and a BtRW plant located near a refuge plant. The mean head capsule width of males emerging from BtRW plants was significantly smaller than the mean head capsule width of males emerging from refuge plants. These results indicate that males emerging from BtRW maize plants may be exposed to sublethal doses of the Bt toxin as larvae. No differences were detected between females emerging from refuge plants compared with Bt‐RW plants. Overall mean head capsule width decreased as the season progressed, regardless of treatment. The diminished head capsule width of western corn rootworm males emerging from Bt‐RW maize may act to enhance resistance management, particularly in a seed mix refuge system.  相似文献   

17.
以棉铃虫Helicoverpa armigera (Hübner)室内敏感品系和田间品系为寄主,研究了亚致死浓度的Bt杀虫蛋白对中红侧沟茧蜂Microplitis mediator (Haliday)生长发育的影响。结果表明: 当寄主一直取食,或者在被寄生前12小时开始取食含Bt杀虫蛋白浓度为0,0.5,1.0, 2.0,4.0,8.0 μg/g的饲料时,与对照相比,中红侧沟茧蜂的卵-幼虫历期延长,茧重和成虫体重降低,成虫寿命缩短,但对茧期没有明显影响。Bt杀虫蛋白能有效抑制两个棉铃虫品系幼虫的生长,显著降低棉铃虫蛹重;当Bt蛋白浓度为4.0 μg/g时,显著降低棉铃虫化蛹率。用转双基因抗虫棉SGK321(表达Cry1A+CpTI蛋白)饲喂两个棉铃虫品系初孵幼虫,室内品系的第2、3、4和5天校正死亡率分别为48.5%、87.8%、96.6%和 95.8%,显著高于田间品系(30.9%、59.6%、80.9%及86.1%)。本研究表明,不论是田间品系还是室内品系,棉铃虫取食含Bt杀虫蛋白的饲料后,对中红侧沟茧蜂的生长发育都具有显著的负面作用。  相似文献   

18.
Cotton bollworm (Helicoverpa armigera) is one of the most serious insect pests of cotton. Transgenic cotton expressing Cry toxins derived from a soil bacterium, Bacillus thuringiensis (Bt), has been produced to target this pest. Bt cotton has been widely planted around the world, and this has resulted in efficient control of bollworm populations with reduced use of synthetic insecticides. However, evolution of resistance by this pest threatens the continued success of Bt cotton. To date, no field populations of bollworm have evolved significant levels of resistance; however, several laboratory-selected Cry-resistant strains of H. armigera have been obtained, which suggests that bollworm has the capacity to evolve resistance to Bt. The development of resistance to Bt is of great concern, and there is a vast body of research in this area aimed at ensuring the continued success of Bt cotton. Here, we review studies on the evolution of Bt resistance in H. armigera, focusing on the biochemical and molecular basis of Bt resistance. We also discuss resistance management strategies, and monitoring programs implemented in China, Australia, and India.  相似文献   

19.
The impact of structured strip row refugia (varying from 10% to 50%) in the Bt cotton crops JKCH1947Bt (producing one toxin, Cry1Ac) and MRC7017BGII (producing two toxins, Cry1Ac and Cry2Ab) on the pest complex and cotton yield was studied. During the cropping season (June 2008 to November 2008), sucking pest incidence was negligible. However, the incidences of spotted bollworm, Earias vittella, and the leafroller, Sylepta derogata, were high on the non-Bt cotton. The total cotton seed yield of the Bt crop plus the refuge decreased proportionately with respect to the increase in proportion of non-Bt cotton. Total cotton production decreased significantly when 40% non-Bt cotton was planted as refuge. These studies showed that a refuge of up to 30% non-Bt cotton in JKCH1947Bt and up to 20% non-Bt cotton in MRC7017Bt did not affect total seed cotton yield compared to 100% Bt cotton.  相似文献   

20.
Larvae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) that survive on genetically modified Bt cotton (Gossypium hirsutum L., Malvaceae) contribute to the risk of widespread resistance to Bt toxins. Current resistance management techniques include pupae busting, which involves deep tilling of the soil to kill overwintering pupae. Unfortunately, pupae busting runs counter to soil and water conserving techniques, such as minimum tillage. This problem could be relieved with biological control methods, whereby predators attack either larvae going to ground to pupate or moths emerging from the ground. We found that the wolf spider Tasmanicosa leuckartii (Thorell) (Araneae: Lycosidae), a common inhabitant of Australian cotton agroecosystems, is an effective predator of H. armigera, attacking and killing most larvae (66%) and emerging moths (77%) in simple laboratory arenas. Tasmanicosa leuckartii also reduced the number of emerging moths by 66% on average in more structurally complex glasshouse arenas. Males, females, and late‐instar juveniles of T. leuckartii were similarly effective. Tasmanicosa leuckartii also imposed non‐consumptive effects on H. armigera, as when a spider was present larvae in the laboratory areas spent less time on the cotton boll and more time on the soil and more mass was lost from the cotton boll. Increased loss of boll mass likely reflects changes in H. armigera foraging behavior induced by the presence of spiders (indirect non‐consumptive effects). Helicoverpa armigera spent more time as pupae when the spider was present in simple laboratory arenas, but not in more complex glasshouse enclosures. Overall, results indicate that T. leuckartii spiders can be effective predators of H. armigera late instars and moths but also suggest that, under some conditions, the presence of spiders could increase the damage to individual cotton bolls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号