首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The ability to recognize kin is widespread, and especially importantin highly social organisms. We studied kin recognition by assessingpatterns of aggression within and between nests of the antLeptothorax longispinosus. Colonies of this species can befractionated into subunits, a condition called polydomy. Theproblem of recognizing relatives is therefore more complexwhen those relatives can live in two or more different places.We hypothesized that spatial subdivision may have resulted ina stronger genetic component to kin recognition than in caseswhere colonies live in a single location. To test our hypothesiswe assessed recognition capabilities for two populations ofthis ant that differ in the complexity of their colonies. Ina New York, USA, population, polydomy is very common, and coloniesalso can have multiple queens. By contrast, a population inWest Virginia, USA, has colonies that typically are monogynousand rarely are polydomous. We conducted introductions of antsbetween different nests collected in the same neighborhood,with self-introductions and alien introductions as controls.Nests from the two populations showed corresponding differencesin their aggression towards intruders. For New York nests, the extent of genetic similarity was the single best predictor ofaggression, whereas for West Virginia nests aggression wasjointly influenced by genetic similarity and spatial distance.In both populations, we found nest pairs for which aggressionwas nonreciprocal; these probably reflect recognition errors by one of the nests. After the ants were maintained in the laboratoryfor 3 months, their aggression scores rose and fewer recognitionerrors were made. Thus nest-mate and colony-mate recognitionin this species are mediated primarily by endogenous cues (geneticsimilarity); the importance of exogenous cues for nest materecognition depends on the population's social system.  相似文献   

2.
The evolution of sociality is facilitated by the recognition of close kin, but if kin recognition is too accurate, nepotistic behaviour within societies can dissolve social cohesion. In social insects, cuticular hydrocarbons act as nestmate recognition cues and are usually mixed among colony members to create a Gestalt odour. Although earlier studies have established that hydrocarbon profiles are influenced by heritable factors, transfer among nestmates and additional environmental factors, no studies have quantified these relative contributions for separate compounds. Here, we use the ant Formica rufibarbis in a cross‐fostering design to test the degree to which hydrocarbons are heritably synthesized by young workers and transferred by their foster workers. Bioassays show that nestmate recognition has a significant heritable component. Multivariate quantitative analyses based on 38 hydrocarbons reveal that a subset of branched alkanes are heritably synthesized, but that these are also extensively transferred among nestmates. In contrast, especially linear alkanes are less heritable and little transferred; these are therefore unlikely to act as cues that allow within‐colony nepotistic discrimination or as nestmate recognition cues. These results indicate that heritable compounds are suitable for establishing a genetic Gestalt for efficient nestmate recognition, but that recognition cues within colonies are insufficiently distinct to allow nepotistic kin discrimination.  相似文献   

3.
Processing of information from the environment, such as assessing group membership in social contexts, is a major determinant of inclusive fitness. For social insects, recognizing brood origin is crucial for inclusive fitness in many contexts, such as social parasitism and kin conflicts within colonies. Whether a recognition signature is informative in kin conflicts depends on the extent of a genetic contribution into the cues. We investigated colony‐ and matriline‐specific variation in egg surface hydrocarbons in seven species of Formica ants. We show that chemical variance is distributed similarly to genetic variation, suggesting a significant genetic contribution to eggs odors in the genus. Significant among matriline components, and significant correlations between chemical and genetic similarity among individuals also indicate kin informative egg odors in several species. We suggest that egg odor surface variation could play a large role in within colony conflicts, and that a comparative method can reveal novel insight into communication of identity.  相似文献   

4.
Kin recognition in social insects has become a central issue in sociobiology because studies of the recognition abilities of social insects provide a test of kin selection theory. W.D. Hamilton(1) formalized kin selection theory by showing how individuals can gain fitness by increasing the reproductive output of relatives (kin). The social interactions of individuals, or groups, should be influenced by the genetic structure of the population. The ability to recognize kin can increase the adaptive value of social behavior by modulating it according to genetic relationship. From this, the specific prediction emerges: if individuals can distinguish among others with which they interact on the basis of the degree to which they are related, then behavior should be biased preferentially toward more closely related reproductive individuals.  相似文献   

5.
Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about 'self' and 'other'. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons.  相似文献   

6.
Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.  相似文献   

7.
When helping behaviour is costly, Hamiltonian logic implies that animals need to direct helpful acts towards kin, so that indirect fitness benefits justify the costs. We revisit inferences about nepotism and aggression in Hamilton''s 1964 paper to argue that he overestimated the general significance of nepotism, but that other issues that he raised continue to suggest novel research agendas today. We now know that nepotism in eusocial insects is rare, because variation in genetic recognition cues is insufficient. A lower proportion of individuals breeding and larger clutch sizes selecting for a more uniform colony odour may explain this. Irreversible worker sterility can induce both the fiercest possible aggression and the highest likelihood of helping random distant kin, but these Hamiltonian contentions still await large-scale testing in social animals.  相似文献   

8.
Kin recognition and incest avoidance in a group-living insect   总被引:2,自引:0,他引:2  
Mate choice theories predict that animals evolved strategiesto mate with optimally genetically dissimilar partners, providingfitness benefits. In group-living species, when adults do notdisperse, assessment of relatedness between conspecifics canbe a key factor for choosing mates. Here, we report for thefirst time, kin recognition abilities and their implicationin mate choice in the gregarious cockroach, Blattella germanica(L.). Binary choice tests showed that females mated preferentiallywith nonsibling rather than with sibling males, thus avoidingincest. In addition, inbreeding induced an important decreaseof their reproductive success. Contrary to what could be expectedwhen females had the choice between a nonsibling strain memberand a nonstrain member, they did not avoid mating with distantlyrelated nonstrain members, and extreme outbreeding induced anincrease of their reproductive success. Furthermore, our matechoice experiments disentangled the influences of familiarityfrom those of relatedness and evidenced that kin discriminationwas based on genetic cues independently of familiarity. Phenotypematching was a plausible mechanism for kin recognition. Contraryto many insect species, body size was not a salient criterionfor mate choice and had no consequences on reproductive success.  相似文献   

9.
The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.  相似文献   

10.
In social insects, workers trade personal reproduction for indirect fitness returns from helping their mother rear collateral kin. Colony membership is generally used as a proxy for kin discrimination, but the question remains whether recognition allows workers to discriminate between kin and nonkin regardless of colony affiliation. We investigated whether workers of the ant Formica fusca can identify their mother when fostered with their mother, their sisters, a hetero‐colonial queen or hetero‐colonial workers. We found that workers always displayed less aggression towards both their mother and their foster queen, as compared to an unfamiliar hetero‐colonial queen. In support of this finding, workers maintain their colony hydrocarbon profile regardless of foster regime, yet show modifications when exposed to different environments. This indicates that recognition entails environmental and genetic components, which allow both discrimination of kin in the absence of prior contact and learning of recognition cues based on group membership.  相似文献   

11.
The cuticular hydrocarbon (CHC) profiles of insects are well known to be variable. This variation may be due to genetic influences, environmental influences, or both. Most prior studies have focused on social insects, mainly those in the Hymenoptera, and have shown that hydrocarbons play an important role mediating social behaviour, particularly via kin recognition. Here, we assess the CHC profiles of three species of parasitoid wasps in the genus Goniozus (Hymenoptera: Bethylidae), some of which are known to attune their behaviour according to both environmentally based and genetically based recognition of kin. We find that CHC profiles vary according to both the genetic background (wasp species) and the developmental environment (host species) of individual parasitoids. This indicates that kin recognition could be based on CHC profiles in these parasitoids, as it is in social Hymenoptera. Because the CHC profiles of species within the genus Goniozus are dissimilar, we also conclude that chemical analysis could be used as a taxonomic tool alongside morphological and molecular genetic identification for Goniozus and other species.  相似文献   

12.
Kin recognition in Bufo scaber tadpoles: ontogenetic changes and mechanism   总被引:1,自引:0,他引:1  
Ontogenetic changes in kin-recognition behavior, effect of social environment on kin-recognition ability, and use of visual and chemical cues in kin recognition have been studied in tadpoles of Bufo scaber after rearing them with kin, in mixed groups, or in isolation from Gosner stage 12 (gastrula). By use of a rectangular choice tank the tadpoles were tested for their ability to choose between (a) familiar siblings and unfamiliar non-siblings, (b) unfamiliar siblings and familiar non-siblings, and (c) unfamiliar siblings and unfamiliar non-siblings. When tested without any stimulus groups in the end compartments of the tank, random distribution was observed for the tadpoles and no bias for the apparatus or the procedure. In the presence of kin and non-kin in the end compartments, significantly more tadpoles spent most of their time near kin (familiar or unfamiliar) rather than near non-kin during early larval stages, up to stage 37. After stage 37 (characterized by the differentiation of toes), test tadpoles showed no preference to associate with kin, suggesting an ontogenetic shift in the kin-recognition ability in B. scaber. In experiments involving selective blockade of visual or chemical cues the test tadpoles preferentially associated near their kin on the basis of chemical rather than visual cues. These findings suggest that familiarity with siblings is not necessary for kin recognition and that kin-recognition ability is not modified after exposure to non-kin by mixed rearing. The findings for B. scaber indicate a self referent phenotype matching mechanism of kin recognition which is predominantly aided by chemical rather than visual cues.  相似文献   

13.
Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation--social insect colonies--because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought.  相似文献   

14.
Signature Systems and Kin Recognition   总被引:1,自引:0,他引:1  
SYNOPSIS. This paper examines mechanisms of individual identificationin the kin recognition process. In type 1 kin recognition, theindividual (e.g., a parent) learns the identifying cues (the"signature") of particular kin (e.g., offspring) at some stagewhen there are reliable contextual cues as to kinship (e.g.,the parent finds the young in its nest). These kin are subsequentlyrecognized via their signatures in situations in which contextualevidence of kinship is lacking. The primary selection pressurein this case is for a mechanism that can generate a large numberof distinctive signatures, and thus permit recognition in largegroups. I develop a model that predicts the necessary informationcapacity of a signature system, and I test this prediction forthe signature call of the bank swallow (Riparia riparia). Themeasured information capacity of 17 bits corresponds well tothe prediction and, moreover, is substantially greater thanthat of the homologous call of the similar but non-colonialrough-winged swallow (Stelgidopteryx ruficollis). In type 2kin recognition, reliable contextual evidence as to kinshipis absent at all times, and kin must be recognized via a signature-matchingprocess. For example, the individual might compare its own signatureto that of the unknown individual, inferring kinship if theirsignatures are sufficiently similar. I describe a multi-locusgenetic signature mechanism that would permit discriminationof kin from non-kin, and suggest how this model might be tested  相似文献   

15.
16.
The genetic structure of social insect populations is influenced by their social organization and dispersal modes. The ant Hypoponera opacior shows diverse reproductive behaviours with regular cycles of outbreeding via winged sexuals and inbreeding via within-nest mating wingless sexuals that reproduce by budding. This unusual life cycle should be reflected in the genetic population structure, and we studied this on different scales using microsatellites. On a macrogeographic scale, populations were considerably structured and migration rates within the Chiricahuas were higher than those in between mountain ranges. On a local scale, our analyses revealed population viscosity through dependent colony foundation and a high genetic diversity with a multicolonial structure. The latter was also evident from recognition trials revealing consistent aggression between non-nestmates. Within-nest matings led to high inbreeding coefficients. Finally, the observed seasonal changes in relatedness can be explained by variation in queen number and differential dispersal of the two reproductive morphs.  相似文献   

17.
The ontogeny of kin recognition and influence of social environment on the development of kin recognition behaviour was experimentally investigated in tadpoles of Bufo melanostictus that lived in aggregations and showed low larval dispersion. Embryos and tadpoles of the toad were reared as (i) kin only, (ii) with kin and non-kin (separated by a mesh screen), and (iii) in isolation. They were tested for the ability to discriminate between (i) familiar siblings and unfamiliar non-siblings, (ii) familiar siblings and familiar non-siblings and, (iii) unfamiliar siblings and unfamiliar non-siblings. All tadpoles were fed on boiled spinach before conducting trials. Preference of test tadpoles to associate near the end compartments whether empty or containing members of specific stimulus groups was assessed using a rectangular choice tank. When tested in tanks with empty end compartments, the test tadpoles showed random distribution and thus no bias for the apparatus or the procedure. In the presence of kin/non-kin in the end compartments a significantly greater number of test tadpoles spent the majority of the time near familiar or unfamiliar kin rather than near familiar or unfamiliar non-kin. Kin discrimination ability persisted throughout larval development. Familiarity with siblings is not required for discriminating kin from non-kin, and kin discrimination ability is not modified following exposure to non-kin. Also, involvement of dietary cues is unlikely to be the prime mechanism of kin recognition inB. melanostictus unlike in some other anurans.  相似文献   

18.
Animals such as social insects that live in colonies can recognizeintruders from other colonies of the same or different speciesusing colony-specific odors. Such colony odors usually haveboth a genetic and an environmental origin. When within-colonyrelatedness is high (i.e., one or very few reproductive queens),colonies comprise genetically distinct entities, and recognitionbased on genetic cues is reliable. However, when nests containmultiple queens and colonies comprise multiple nests (polydomy),the use of purely genetically determined recognition labelsmay become impractical. This is due to high within-colony geneticheterogeneity and low between-colony genetic heterogeneity.This may favor the use of environmentally determined recognitionlabels. However, because nests within polydomous colonies maydiffer in their microenvironment, the use of environmental labelsmay also be impractical unless they are actively mixed amongthe nests. Using a laboratory experiment, we found that bothisolation per se and diet composition influenced the cuticularchemical profiles in workers of Formica aquilonia. In addition,the level of aggression increased when both the proportionsof dietary ingredients and the availability of food were altered.This suggests that increased aggression was mediated by changesin the chemical profile and that environmental cues can mediaterecognition between colonies. These results also suggest thatthe underlying recognition cues are mutable in response to extrinsicfactors such as the amount and the composition of food.  相似文献   

19.
In social insects, nestmate recognition systems can be dynamic and modulated in response to various kinds of genetic and environmental cues. For example, multiple-queen colonies can possess weak recognition abilities relative to single-queen colonies, due to broader exposure to heritable and environmentally derived nestmate recognition cues.We conducted field experiments to examine nestmate recognition ability in a neotropical polygynous wasp, Polybia paulista. Despite the fact that the effective queen number in P. paulista is the highest ever recorded in polygynous wasps, this species exhibits a well functioning nestmate recognition system, which allows colony entry only to nestmate individuals. Similar to other social Hymenoptera, young wasps express colony specific chemical signatures within several days after emergence. This is the first study to show that the polygynous epiponine wasp is able to distinguish nestmates from non-nestmates. Received 23 May 2006; revised 6 October 2006; accepted 23 October 2006.  相似文献   

20.
The ability to recognise kin requires the individual to possess a variety of abilities. Individuals must produce a cue which indicates relatedness, they must process this cue to determine relatedness and then must act on this cue. Research has concentrated on the first and final stage of this process, i.e., the cues of kinship and kin correlated behaviour. Little attention has been paid to how individuals process cues to determine relatedness. This paper discusses how individuals ‘recognise’ kin, the exhibition of kin correlated behaviour and considers the role of the MHC in these processes. Two broad theories have emerged to explain how individuals recognise their kin: either a recognition gene(s) or some experiential mechanism. In mammals there is no evidence to suggest that recognition (the processing of the cue) is under genetic control but rather is the result of experience, learning about related individuals during development. Moreover studies on kin recognition in the domestic dog suggest that all kin are not recognised by the same process but different classes of kin, parents, siblings may well be recognised using different means. Studies of kin correlated behaviour suggest that the behaviour exhibited towards kin by Mongolian gerbils is mediated by the environment. Factors of environmental familiarity, sex and developmental age all affect the response of individuals to kin and non‐kin. In these situations the ability to recognise kin does not change but the exhibition of kin correlated behaviour changes according to environmental conditions. These studies indicate that kin recognition may not be the ‘unified’ process previously thought and thus any explanations of the proximate and ultimate causation of kin recognition need to encompass this complexity. The question remains of whether the MHC is complex enough to do so. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号