首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of NADPH with ferric complexes to catalyze microsomal generation of reactive oxygen intermediates has been well studied. Experiments were carried out to characterize the ability of NADH to interact with various ferric chelates to promote microsomal lipid peroxidation and generation of .OH-like species. In the presence of NADH and iron, microsomes produced .OH as assessed by the oxidation of a variety of .OH scavenging agents. Rates of NADH-dependent .OH production were 50 to 80% those of the NADPH-catalyzed reaction. The oxidation of dimethyl sulfoxide or t-butyl alcohol was inhibited by catalase and competitive .OH scavengers but not by superoxide dismutase or carbon monoxide. NADH-dependent .OH production was effectively catalyzed by ferric-EDTA and ferric-diethylenetriaminepentaacetic acid (DTPA), whereas ferric-ATP and ferric-citrate were poor catalysts. All these ferric chelates were reduced by microsomes in the presence of NADH (and NADPH). H2O2 was produced in the presence of NADH in a reaction stimulated by the addition of ferric-EDTA, consistent with the increase in .OH production. The latter appeared to be limited by the rate of H2O2 generation rather than the rate of reduction of the ferric chelate. NADH-dependent lipid peroxidation was much lower than the NADPH-catalyzed reaction and showed an opposite response to catalysis by ferric complexes compared to .OH generation as production of thiobarbituric acid-reactive material was increased with ferric-ATP and -citrate, but not with ferric-EDTA or- DTPA, and was not affected by catalase, SOD, or .OH scavengers. These results indicate that NADH can support microsomal reduction of ferric chelates, with the subsequent production of .OH-like species and peroxidation of lipids. The pattern of response of the NADH-dependent reactions with respect to catalytic effectiveness of ferric chelates and sensitivity to radical scavengers is similar to that found with NADPH. Many of the metabolic actions of ethanol have been ascribed to production of NADH as a consequence of oxidation by alcohol dehydrogenase. Since the cytosol normally maintains a highly oxidized NAD+/NADH redox ratio, it is interesting to speculate that increased availability of NADH from the oxidation of ethanol may support microsomal reduction of iron complexes, with the subsequent generation of reactive oxygen intermediates.  相似文献   

2.
Microsomes from chronic ethanol-fed rats were previously shown to catalyze the NADPH-dependent production of reactive oxygen intermediates at elevated rates compared to controls. Recent studies have shown that NADH can also serve as a reductant and promote the production of oxygen radicals by microsomes. The current study evaluated the influence of chronic ethanol consumption on NADH-dependent microsomal production of reactive oxygen intermediates, and compared the results with NADH to those of NADPH. Microsomal oxidation of chemical scavengers, taken as a reflection of the production of hydroxyl radical (.OH)-like species was increased about 50% with NADH as cofactor and about 100% with NADPH after chronic ethanol consumption. The potent inhibition of the production of .OH-like species by catalase suggests a precursor role for H2O2 in .OH production. Rates of NADH- and NADPH-dependent H2O2 production were increased by about 50 and 70%, respectively, after chronic ethanol consumption. A close correlation between rates of H2O2 production and generation of .OH-like species was observed for both NADH and NADPH, and increased rates of H2O2 production appear to play an important role in the elevated generation of .OH-like species after chronic ethanol treatment. Microsomal lipid peroxidation was elevated about 60% with NADH, and 120% with NADPH, after ethanol feeding. With both types of microsomal preparations, the characteristics of the NADH-dependent reactions were similar to the NADPH-dependent reactions, e.g., sensitivity to antioxidants and free radical scavengers and catalytic effectiveness of ferric complexes. However, rates with NADPH exceeded the NADH-dependent rates by 50 to 100%, and the increased production of reactive oxygen intermediates by microsomes after ethanol treatment was greater with NADPH (about twofold) than with NADH (about 50%). Oxidation of ethanol results in an increase in hepatic NADH levels and interaction of NADH, iron, and microsomes can produce potent oxidants capable of initiating lipid peroxidation and oxidizing .OH scavengers. These acute metabolic interactions produced by ethanol-derived NADH are increased, not attenuated, in microsomes from chronic ethanol-fed rats, and it is possible that such increases in NADH (and NADPH)-dependent production of reactive oxygen species play a role in the development of oxidative stress in the liver as a consequence of ethanol treatment.  相似文献   

3.
The production of potent oxygen radicals by microsomal reaction systems has been well characterized. Relatively little attention has been paid to generation of oxygen radicals by liver nuclei, or to the interaction of nuclei with different ferric complexes to catalyze NADH- or NADPH-dependent production of reactive oxygen intermediates. Intact rat liver nuclei were capable of catalyzing an iron-dependent production of .OH as reflected by the oxidation of .OH scavenging agents such as 2-keto-4-thiomethylbutyrate, dimethyl sulfoxide, and t-butyl alcohol. Inhibition of .OH production by catalase implicates H2O2 as the precursor of .OH generated by the nuclei, whereas superoxide dismutase had only a partially inhibitory effect. The production of .OH with either cofactor was striking increased by addition of ferric-EDTA or ferric-diethylenetriamine-pentaacetic acid (DTPA) whereas ferric-ATP and ferric-citrate were not effective catalysts. All these ferric complexes were reduced by the nuclei in the presence of either NADPH or NADH. The pattern of iron chelate effectiveness in catalyzing lipid peroxidation by nuclei was opposite to that of .OH production; with either NADH or NADPH, nuclear lipid peroxidation was increased by the addition of ferric ammonium sulfate, ferric-ATP, or ferric-citrate, but not by ferric-EDTA or ferric-DTPA. NADPH-dependent nuclear lipid peroxidation was insensitive to catalase, superoxide dismutase, or .OH scavengers; the NADH-dependent reaction showed a partial sensitivity (30 to 40%) to these additions. The overall patterns of .OH production and lipid peroxidation by the nuclei are similar to those shown by microsomes, e.g., effect of ferric complexes, sensitivity to antioxidants; however, rates with the nuclei are less than 20% those of microsomes, which reflect the lower activities of NADPH- and NADH-cytochrome c reductase in the nuclei. The potential for nuclei to reduce ferric complexes and catalyze production of .OH-like species may play a role in the susceptibility of the genetic material to oxidative damage under certain conditions since such radicals would be produced site-directed and not exposed to cellular antioxidants.  相似文献   

4.
Redox cycling agents such as paraquat and menadione increase the generation of reactive oxygen species in biological systems. The ability of NADPH and NADH to catalyze the generation of oxygen radicals from the metabolism of these redox cycling agents by rat liver nuclei was determined. The oxidation of hydroxyl radical scavenging agents by the nuclei was increased in the presence of menadione or paraquat, especially with NADPH as the reductant. Paraquat, even at high concentrations, was relatively ineffective with NADH. The highest rates of generation of .OH-like species occurred with ferric-EDTA as the iron catalyst. Certain ferric complexes such as ferric-ATP, ferric-citrate, or ferric ammonium sulfate, which were ineffective catalysts for .OH generation in the absence of paraquat or menadione, were reactive in the presence of the redox cycling agents. Oxidation of .OH scavengers was sensitive to catalase and competitive .OH-scavenging agents under all conditions. The redox cycling agents increased NADPH-dependent nuclear generation of H2O2; stimulation of H2O2 production may play a role in the increase in .OH generation by menadione and paraquat. Menadione inhibited nuclear lipid peroxidation, whereas paraquat and adriamycin were stimulatory. The nuclear lipid peroxidation with either NADPH or NADH plus the redox cycling agents was not sensitive to catalase or .OH scavengers. These results indicate that the interaction of rat liver nuclei with redox cycling agents and iron leads to the production of potent oxidants which initiate lipid peroxidation or oxidize .OH scavengers. Although NADPH is more effective, NADH can also participate in catalyzing the production of reactive oxygen intermediates from the interaction of quinone redox cycling agents with nuclei. The ability of redox cycling agents to interact with various ferric complexes to catalyze nuclear generation of potent oxidizing species with either NADPH or NADH as reductants may contribute to the oxidative stress, toxicity, and mutagenicity of these agents in biological systems.  相似文献   

5.
Addition of beta-lapachone, an o-naphthoquinone endowed with trypanocidal properties to respiring Trypanosoma cruzi epimastigotes induced the release of O2- and H2O2 from the whole cells to the suspending medium. The same beta-lapachone concentration (4 micron) that released H2O2 at maximal rate completely inhibited T. cruzi growth in a liquid medium. The position isomer, alpha-lapachone, did not stimulate O2- and H2O2 release, and did not inhibit epimastigote growth. beta-Lapachone was able to stimulate H2O2 production by the epimastigote homogenate in the presence of NADH as reductant. The same effect was observed with the mitochondrial fraction supplemented with NADH, where beta-lapachone enhanced the generation of O2- and H2O2 4.5- and 2.5-fold respectively. beta-Lapachone also increased O2- and H2O2 production (2.5 and 2-fold respectively) by the microsomal fraction with NADPH as reductant. Cyanide-insensitive NADH and NADPH oxidation by the mitochondrial and microsomal fractions (quinone reductase activity) was stimulated to about the same extent by beta-lapachone. alpha-Lapachone was unable to increase O2- and H2O2 production and quinone reductase activity of the mitochondrial and microsomal fractions.  相似文献   

6.
Oxygen enhanced the bactericidal activity of rifamycin SV to Escherichia coli K12. Anaerobically grown cells, which had a low level of superoxide dismutase, were more susceptible to the bactericidal activity than aerobically grown cells, which contained a high level of superoxide dismutase. Oxygen also enhanced the inhibition of RNA polymerase activity of rifamycin SV, when Mn2+ was used as a cofactor. Rifamycin S was reduced to rifamycin SV by NADPH catalyzed by cell-free extracts of Escherichia coli K12. These results indicate that the inhibition of bacterial growth by rifamycin SV is due to the production of active species of oxygen resulting from the oxidation-reduction cycle of rifamycin SV in the cells. The aerobic oxidation of rifamycin SV to rifamycin S was induced by metal ions, such as Mn2+, Cu2+, and Co2+. The most effective metal ion was Mn2+. In the presence of Mn2+, accompanying the consumption of 1 mol of oxygen and the oxidation of 1 mol of rifamycin SV, 1 mol of hydrogen peroxide and 1 mol of rifamycin S were formed. Superoxide was generated during the autoxidation of rifamycin SV. Superoxide dismutase inhibited the formation of rifamycin S, but scavengers for hydrogen peroxide and the hydroxyl radical did not affect the oxidation. A mechanism of Mn2+-catalyzed oxidation of rifamycin SV is proposed and its relation to bactericidal activity is discussed.  相似文献   

7.
The effect of inducing the rat liver nuclear mixed-function oxidase system by phenobarbital or 3-methylcholanthrene on NADPH- and NADH-dependent production of reactive oxygen intermediates was evaluated. The inducing agents produced a 2-fold increase in cytochrome P-450, a 50 to 70% increase in NADPH-cytochrome c reductase activity, and a 20 to 30% increase in NADH-cytochrome c reductase activity. Associated with these increases was a corresponding increase in NADPH- and NADH-dependent production of hydroxyl radical (.OH)-like species and of H2O2. Rates of .OH production were inhibited by catalase and partially sensitive to superoxide dismutase. The increase in nuclear production of .OH-like species after drug treatment appears to be due a corresponding increase in H2O2 generation. In contrast to H2O2 and .OH generation, production of thiobarbituric acid-reactive material by nuclei was not increased by the phenobarbital or 3-methylcholanthrene treatment. Redox cycling agents such as menadione and paraquat increased oxygen radical generation to similar extents in the control and the induced nuclei. These results indicate that induction of the nuclear mixed-function oxidase system by phenobarbital or 3-methylcholanthrene can result in a subsequent increase in production of reactive oxygen intermediates in the presence of either NADPH or NADH.  相似文献   

8.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   

9.
The addition of menadione or paraquat to rat liver microsomes resulted in about a threefold increase in the production of hydroxyl radical (.OH) as reflected by the increased oxidation of 2-keto-4-thiomethylbutyric acid (KMBA) to ethylene. This increase was not sensitive to superoxide dismutase but was blocked by catalase. The increase occurred in the absence of added iron and was not affected by the potent iron chelating agent, desferrioxamine, which suggests the possibility that .OH was produced from an interaction between H2O2 and the paraquat or menadione radical. Menadione and paraquat were especially effective in stimulating the oxidation of KMBA in the presence of certain iron chelates such as ferric-ADP, -ATP, or -EDTA, but not ferric-desferrioxamine, -citrate, or -histidine, or unchelated iron. In fact, ferric-ADP or -ATP only stimulated .OH production in the presence of menadione or paraquat. In the presence of ferric-EDTA, the greater than additive increase of .OH production was sensitive to catalase, but not to superoxide dismutase, suggesting the possibility of reduction of ferric-EDTA by paraquat or menadione radical. The interactions with ferric adenine nucleotides may increase the catalytic effectiveness of menadione or paraquat in producing potent oxidants such as the hydroxyl radical, and thus play a role in the toxicity associated with these agents. Paraquat and menadione had little effect on the overall oxidation of ethanol by microsomes. Microsomal drug metabolism was decreased by menadione or paraquat. As a consequence, the effect of these agents on the microsomal oxidation of ethanol was complex since it appeared that paraquat and menadione stimulated the oxidation of ethanol by a .OH-dependent mechanism, but inhibited the oxidation of ethanol by a cytochrome P-450-dependent oxidation pathway. Experiments with carbon monoxide, ferric-EDTA, and 2-butanol plus catalase tended to verify that microsomal oxidation of alcohols was increased by a .OH-dependent pathway when menadione or paraquat were added to microsomes.  相似文献   

10.
利福霉素SV毒性低、疗效高、抗菌谱广,主要由地中海拟无枝酸菌发酵生产,其发酵过程属于耗氧发酵,供氧直接影响产物形成.为减少发酵过程氧限制影响,进一步提高利福霉素发酵产量,通过构建定向氧限制模型,将常温常压等离子体诱变和无水亚硫酸钠氧限制筛选模型相结合,建立了利福霉素生产菌株24孔板快速培养的高通量筛选方法,高效选育出能...  相似文献   

11.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

12.
L Y Fong  K M Lee  H J Lin 《Mutation research》1982,105(1-2):29-36
The mutagenic activity of dimethylnitrosamine activated by rat-liver microsomes in the presence of NADH was compared with that obtained with NADPH. 3 histidine auxotrophic strains of Salmonella underwent reversions after activation with NADH as the sole coenzyme. All 3 tester strains showed a dose-response relationship with dimethylnitrosamine (10-125 mumoles per plate) after NADH-supported activation. With NADH as the sole coenzyme, the most sensitive strain, hisG46, showed a 105-fold increase in mutagenesis frequency as compared with the 230-fold increase obtained with NADPH. Activation of dimethylnitrosamine in the presence of NADH and NADPH, in combination, produced mutagenesis at frequencies above those seen with NADH alone, but less than or equal to those seen with NADPH as the only coenzyme during the activation step. Experiments in vitro showed that microsomal incorporation of carbon from [14C]dimethylnitrosamine was highest in the presence of NADPH, lowest with NADH and reached intermediate levels when both coenzymes were present. The source of the microsomes in all experiments was liver from rats pre-treated with Aroclor 1254.  相似文献   

13.
Experiments were carried out to evaluate whether the molecular mechanism for ethanol oxidation by microsomes, a minor pathway of alcohol metabolism, involved generation of hydroxyl radical (.OH). Microsomes oxidized chemical .OH scavengers (KMB, DMSO, t-butyl alcohol, benzoate) by a reaction sensitive to catalase, but not SOD. Iron was required for microsomal .OH generation in view of the potent inhibition by desferrioxamine; however, the chelated form of iron was important. Microsomal .OH production was effectively stimulated by ferric EDTA or ferric DTPA, but poorly increased with ferric ATP, ferric citrate, or ferric ammonium sulfate. By contrast, the latter ferric complexes effectively increased microsomal chemiluminescence and lipid peroxidation, whereas ferric EDTA and ferric DTPA were inhibitory. Under conditions that minimize .OH production (absence of EDTA, iron) ethanol was oxidized by a cytochrome P-450-dependent process independent of reactive oxygen intermediates. Under conditions that promote microsomal .OH production, the oxidation of ethanol by .OH becomes more significant in contributing to the overall oxidation of ethanol by microsomes. Experiments with inhibitors and reconstituted systems containing P-450 and NADPH-P-450 reductase indicated that the reductase is the critical enzyme locus for interacting with iron and catalyzing production of reactive oxygen species. Microsomes isolated from rats chronically fed ethanol catalyzed oxidation of .OH scavengers, light emission, and inactivation of added metabolic enzymes at elevated rates, and displayed an increase in ethanol oxidation by a .OH-dependent and a P-450-dependent pathway. It is possible that enhanced generation of reactive oxygen intermediates by microsomes may contribute to the hepatotoxic effects of ethanol.  相似文献   

14.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

15.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

16.
1. Paraquat and diquat produce only a slight increase in the oxygen uptake of rat liver mitochondria, and it is likely that they do not penetrate the mitochondrial membrane. 2. In mitochondrial fragments inhibited by antimycin A or by Amytal, both substances stimulate oxygen uptake with NADH or beta-hydroxybutyrate as substrate but not with succinate. The NADH dehydrogenase of the respiratory chain appears to be involved, at a site only partially inhibited by Amytal. 3. An NADPH oxidase activity is stimulated in rat liver microsomes by diquat, and to a smaller extent by paraquat; diquat also causes an NADH oxidase activity to develop. The effect is not inhibited by carbon monoxide or p-chloromercuribenzoate, and it is probable that a flavoprotein is involved by a mechanism not requiring thiol groups. 4. One molecule of oxygen can oxidize two molecules of NADPH in the stimulated microsomal system, the hydrogen peroxide produced being broken down by a catalase activity in the microsomes. 5. Diquat can stimulate NADH oxidase and NADPH oxidase activity in the postmicrosomal soluble fraction; the enzyme involved may be DT-diaphorase. 6. The mechanism of these reactions and their significance in relation to the toxicity of the dipyridilium compounds are discussed.  相似文献   

17.
18.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

19.
Studying liver microsomes from 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced or vehicle-treated (noninduced) mice, we evaluated the in vitro effects of added chemicals on the production of reactive oxygen due to substrate/P450-mediated uncoupling. The catalase-inhibited NADPH-dependent H(2)O(2) production (luminol assay) was lower in induced than noninduced microsomes. The effects of adding chemicals (2.5 microM) in vitro could be divided into three categories: Group 1, highly halogenated and coplanar compounds that increased H(2)O(2) production at least 5-fold in induced, but not in noninduced, microsomes; Group 2, non-coplanar halogenated biphenyls that did not affect H(2)O(2) production; Group 3, minimally halogenated biphenyls and benzo[a]pyrene that decreased H(2)O(2) production. Molar consumption of NADPH and O(2) and molar H(2)O(2) production (o-dianisidine oxidation) revealed that Group 1 compounds mostly increased, Group 2 had no effect, and Group 3 decreased the H(2)O(2)/O(2) and H(2)O(2)/NADPH ratios. Microsomal lipid peroxidation (thiobarbituric acid-reactive substances) was proportional to H(2)O(2) production. Although TCDD induction decreased microsomal production of H(2)O(2), addition of Group 1 compounds to TCDD-induced microsomes in vitro stimulated the second-electron reduction of cytochrome P450 and subsequent release of H(2)O(2) production. This pathway is likely to contribute to the oxidative stress response and associated toxicity produced by many of these environmental chemicals.  相似文献   

20.
In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号