首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Association studies use statistical links between genetic markers and the phenotype variation across many individuals to identify genes controlling variation in the target phenotype. However, this approach, particularly conducted on a genome‐wide scale (GWAS), has limited power to identify the genes responsible for variation in traits controlled by complex genetic architectures. In this study, we employ real‐world genotype datasets from four crop species with distinct minor allele frequency distributions, population structures and linkage disequilibrium patterns. We demonstrate that different GWAS statistical approaches provide favourable trade‐offs between power and accuracy for traits controlled by different types of genetic architectures. FarmCPU provides the most favourable outcomes for moderately complex traits while a Bayesian approach adopted from genomic prediction provides the most favourable outcomes for extremely complex traits. We assert that by estimating the complexity of genetic architectures for target traits and selecting an appropriate statistical approach for the degree of complexity detected, researchers can substantially improve the ability to dissect the genetic factors controlling complex traits such as flowering time, plant height and yield component.  相似文献   

2.
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.  相似文献   

3.
Turner syndrome (TS) is a human genetic disorder involving females who lack all or part of one X chromosome. The complex phenotype includes ovarian failure, a characteristic neurocognitive profile and typical physical features. TS features are associated not only with complete monosomy X but also with partial deletions of either the short (Xp) or long (Xq) arm (partial monosomy X). Impaired visual-spatial/perceptual abilities are characteristic of TS children and adults of varying races and socioeconomic status, but global developmental delay is uncommon. The cognitive phenotype generally includes normal verbal function with relatively impaired visual-spatial ability, attention, working memory, and spatially dependent executive function. The constellation of neurocognitive deficits observed in TS is most likely multifactorial and related to a complex interaction between genetic abnormalities and hormonal deficiencies. Furthermore, other determinants, including an additional genetic mechanism, imprinting, may also contribute to cognitive deficits associated with monosomy X. As a relatively common genetic disorder with well-defined manifestations, TS presents an opportunity to investigate genetic and hormonal factors that influence female cognitive development. TS is an excellent model for such studies because of its prevalence, the well-characterized phenotype, and the wealth of molecular resources available for the X chromosome. In the current review, we summarize the hormonal and genetic factors that may contribute to the TS neurocognitive phenotype. The hormonal determinants of cognition in TS are related to estrogen and androgen deficiency. Our genetic hypothesis is that haploinsufficiency for gene/genes on the short arm of the X chromosome (Xp) is responsible for the hallmark features of the TS cognitive phenotype. Careful clinical and molecular characterization of adult subjects missing part of Xp links the TS phenotype of impaired visual spatial/perceptual ability to specific distal Xp chromosome regions. We demonstrate that small, nonmosaic deletion of the distal short arm of the X chromosome in adult women is associated with the same hallmark cognitive profile seen in adult women with TS. Future studies will elucidate the cognitive deficits and the underlying etiology. These results should allow us to begin to design cognitive interventions that might lessen those deficits in the TS population.  相似文献   

4.
Noonan syndrome (NS) is an autosomal-dominant genetic disorder associated with highly variable features, including heart disease, short stature, minor facial anomalies and learning disabilities. Recent gene discoveries have laid the groundwork for exploring whether variability in the NS phenotype is related to differences at the genetic level. In this study, we examine the influence of both genotype and nongenotypic factors on cognitive functioning. Data are presented from 65 individuals with NS (ages 4–18) who were evaluated using standardized measures of intellectual functioning. The cohort included 33 individuals with PTPN11 mutations, 6 individuals with SOS1 mutations, 1 individual with a BRAF mutation and 25 participants with negative, incomplete or no genetic testing. Results indicate that genotype differences may account for some of the variation in cognitive ability in NS. Whereas cognitive impairments were common among individuals with PTPN11 mutations and those with unknown mutations, all of the individuals with SOS1 mutations exhibited verbal and nonverbal cognitive skills in the average range or higher. Participants with N308D and N308S mutations in PTPN11 also showed no (or mild) cognitive delays. Additional influences such as hearing loss, motor dexterity and parental education levels accounted for significant variability in cognitive outcomes. Severity of cardiac disease was not related to cognitive functioning. Our results suggest that some NS-causing mutations have a more marked impact on cognitive skills than others.  相似文献   

5.
Neuroanatomy in fragile X females: the posterior fossa.   总被引:5,自引:1,他引:4       下载免费PDF全文
The relative homogeneity of the neuropsychiatric phenotype in individuals with fragile (fra) X syndrome suggests that there are consistent central nervous system (CNS) abnormalities underlying the observed cognitive and behavioral abnormalities. In this study, the neuroanatomy of the posterior fossa and other selected CNS regions in 12 young fra X females were compared with those of a group of 12 age-, sex-, and IQ-matched females without evidence of the fra X syndrome. Fra X females were shown to have decreased size of the posterior cerebellar vermis and increased size of the fourth ventricle, findings that are identical to those previously reported for fra X males. When compared with fra X male and nonfra X control groups, the distribution of the posterior-vermis and fourth-ventricle variables for the fra X female group was intermediate. These results support the hypothesis that the fra X genetic abnormality leads to hypoplasia of the posterior cerebellar vermis, a neuroanatomical variation of potential importance to both developmental and neuropsychiatric syndromes.  相似文献   

6.
By middle childhood, the same genetic factors are largely responsible for individual differences in verbal and nonverbal abilities, suggesting a genetic basis for general cognitive ability ("g"). Our previous work on verbal and nonverbal abilities throughout the normal range of variation during infancy and early childhood suggests that genetic influences show domain-specific as well as domain-general effects, implying that the switch to nearly complete domain-general effects occurs later in development. Much less is known about the genetic structure of low cognitive performance, although our previous work has shown that a composite measure of low "g" is highly heritable at 2, 3 and 4 years of age. We report the first multivariate, longitudinal analyses of low verbal and nonverbal cognitive abilities (defined as the lowest 10% of the distribution) at 2, 3 and 4 years of age using data from 9026 pairs of UK twins assessed by their parents as part of the Twins Early Development Study (TEDS). Domain-general genetic influences increased significantly from 2 to 3 to 4 years. Although the phenotypic polychoric correlation between low verbal and low nonverbal ability was similar at 2, 3 and 4 years (.36,.43,.35), the genetic contribution to the phenotypic correlation increased dramatically (.37,.47,.76), with a corresponding decrease in the comorbid influence of shared environment (.61,.44,.35). We conclude that for low ability, as well as for normal variation in ability, genetic "g" emerges during early childhood but is not fully developed until middle childhood.  相似文献   

7.
The development of complex diseases such as coronary heart disease and diabetes mellitus is influenced by numerous genes. However, the contribution of a single gene is relatively small. The identification of genetic variants associated with complex diseases therefore requires large efforts and well-characterized groups of patients and controls. Alternatively, investigation of intermediate phenotypes instead of these complex endpoints seems to be more promising. An intermediate phenotype is usually already well known to be associated with the investigated disease, is heritable, and represents one aspect among others in the pathogenesis of the complex disease. This results in an accentuation of the phenotype and reduction of genetic heterogeneity. Investigating the genetics of the intermediate phenotype instead of the genetics of the end phenotype allows elucidation of this aspect of the disease. Optimal intermediate phenotypes are quantitative, easy-to-measure biochemical parameters. This results in an increased statistical power in contrast to qualitative phenotypes.  相似文献   

8.
Although neither the genome nor the environment can be manipulated in research on human behaviour, some of the new tools of molecular genetics can be brought to bear on human behavioural disorders (e.g. cognitive disabilities) and quantitative traits (e.g. cognitive abilities). The inability to manipulate the human genome experimentally has had the positive effect of focusing attention on naturally occuring genetic variation responsible for behavioural differences among individuals in all their complex multifactorial splendour. Genes in such complex multiple-gene systems are called quantitative trait loci (QTLs), which merge the two worlds of genetic research, quantitative genetics and molecular genetics. Although most genetic research on complex human behaviour has focused on severe mental disorders, cognitive abilities and disabilities may be even more immediately relevant to neuroscience. For example, verbal ability and spatial ability are two of the most heritable cognitive abilities, and reading disability is the first behavioural disability for which replicated QTL linkage has been found. The purpose of this essay is to provide an overview of the genetics of cognitive abilities and disabilities as an example of the impending merger of quantitative genetics and molecular genetics in QTL analysis of complex traits.  相似文献   

9.
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward — females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term ‘good gene’ be used exclusively to refer to additive genetic variation in fitness, ‘compatible gene’ be used to refer to nonadditive genetic variation in fitness, and ‘genetic quality’ be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.  相似文献   

10.
Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole‐genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region—the previously described subspecies (“fulvescens”) from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.  相似文献   

11.
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.  相似文献   

12.
Poyatos JF 《PloS one》2011,6(2):e14598
Genetic interactions are being quantitatively characterized in a comprehensive way in several model organisms. These data are then globally represented in terms of genetic networks. How are interaction strengths distributed in these networks? And what type of functional organization of the underlying genomic systems is revealed by such distribution patterns? Here, I found that weak interactions are important for the structure of genetic buffering between signaling pathways in Caenorhabditis elegans, and that the strength of the association between two genes correlates with the number of common interactors they exhibit. I also determined that this network includes genetic cascades balancing weak and strong links, and that its hubs act as particularly strong genetic modifiers; both patterns also identified in Saccharomyces cerevisae networks. In yeast, I further showed a relation, although weak, between interaction strengths and some phenotypic/evolutionary features of the corresponding target genes. Overall, this work demonstrates a non-random organization of interaction strengths in genetic networks, a feature common to other complex networks, and that could reflect in this context how genetic variation is eventually influencing the phenotype.  相似文献   

13.
Population-based genetic association studies, popularly known as case-control studies, have continued to be the most preferred method for deciphering the genetic basis of various complex diseases, even in the post-human genome sequencing era. However, interpopulation differences in allele, genotype, and haplotype frequencies and linkage disequilibrium patterns lead to inconsistent results in candidate gene association studies. Therefore, for any meaningful disease association study, knowledge of the normative genetic background of the baseline population is a prerequisite. In addition, such genetic variation data also provide a ready-made menu of allele frequencies and linkage disequilibrium patterns of various polymorphisms in specific candidate genes in a particular population, which is a useful reference for further genetic association studies. Such genetic variation data are lacking for the Indian population, which represents about one-sixth of the world's population. In the present study we have reported the allele, genotype, and haplotype frequencies, Hardy-Weinberg equilibrium status, and linkage disequilibrium patterns of 12 polymorphisms in six candidate genes from the renin-angiotensin-aldosterone system among Indians. Because of their different history of origin, the Indian population is broadly divided into two subpopulations: North Indians (Caucasian Europeans) and South Indians (Dravidians). Considering this well-documented difference in gene pools, we have presented a comparative account of the normative genetic data of North Indian and South Indian populations with at least four individuals of urban and suburban origin from each of the representative states of northern and southern India.  相似文献   

14.
The thickness of mammalian tooth enamel plays a prominent role in paleontology because it correlates with diet, and thicker enamel protects against tooth breakage and wear. Hominid evolutionary studies have stressed the importance of this character for over 30 years, from the identification of "Ramapithecus" as an early Miocene hominid, to the recent discovery that the earliest hominids display molar enamel intermediate in thickness between extant chimpanzees and Australopithecus. Enamel thickness remains largely unexplored for nonhominoid primate fossils, though there is significant variation across modern species. Despite the importance of enamel thickness variation to primate evolution, the mechanisms underlying variation in this trait have not yet been elucidated. We report here on the first quantitative genetic analysis of primate enamel thickness, an analysis based on 506 pedigreed baboons from a captive breeding colony. Computed tomography analysis of 44 Papio mandibular molars shows a zone of sufficiently uniform enamel thickness on the lateral surface of the protoconid. With this knowledge, we developed a caliper metric measurement protocol for use on baboon molars worn to within this zone, enabling the collection of a data set large enough for genetic analyses. Quantitative genetic analyses show that a significant portion of the phenotypic variance in enamel thickness is due to the additive effects of genes and is independent of sex and tooth size. Our models predict that enamel thickness could rapidly track dietary adaptive shifts through geological time, thus increasing the potential for homoplasy in this character. These results have implications for analyses of hominoid enamel thickness variation, and provide a foundation from which to explore the evolution of this phenotype in the papionin fossil record.  相似文献   

15.
Brain size varies substantially across the animal kingdom and is often associated with cognitive ability; however, the genetic architecture underpinning natural variation in these key traits is virtually unknown. In order to identify the genetic architecture and loci underlying variation in brain size, we analysed both coding sequence and expression for all the loci expressed in the telencephalon in replicate populations of guppies (Poecilia reticulata) artificially selected for large and small relative brain size. A single gene, Angiopoietin-1 (Ang-1), a regulator of angiogenesis and suspected driver of neural development, was differentially expressed between large- and small-brain populations. Zebra fish (Danio rerio) morphants showed that mild knock down of Ang-1 produces a small-brained phenotype that could be rescued with Ang-1 mRNA. Translation inhibition of Ang-1 resulted in smaller brains in larvae and increased expression of Notch-1, which regulates differentiation of neural stem cells. In situ analysis of newborn large- and small-brained guppies revealed matching expression patterns of Ang-1 and Notch-1 to those observed in zebrafish larvae. Taken together, our results suggest that the genetic architecture affecting brain size in our population may be surprisingly simple, and Ang-1 may be a potentially important locus in the evolution of vertebrate brain size and cognitive ability.  相似文献   

16.
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.  相似文献   

17.
Epilepsy is one of the most common neurological disorders characterized by abnormal electrical activity in the central nervous system. The clinical features of this disorder are recurrent seizures, difference in age onset, type, and frequency, leading to motor, sensory, cognitive, psychic, or autonomic disturbances. Since the discovery of the first monogenic gene mutation in 1995, it is proposed that genetic factor plays an important role in the mechanism of epilepsy. Genes discovered in idiopathic epilepsies encode for ion channel or neurotransmitter receptor proteins, whereas syndromes with epilepsy as a main feature are caused by genes that are involved in functions such as cortical development, mitochondrial function, and cell metabolism. The identification of these monogenic epilepsy-causing genes provides new insight into the pathogenesis of epilepsies. Although most of the identified gene mutations present a monogenic inheritance, most of idiopathic epilepsies are complex genetic diseases exhibiting a polygenic or oligogenic inheritance. This article reviews recent genetic and molecular progresses in exploring the pathogenesis of epilepsy, with special emphasis on monogenic epilepsy-causing genes, including voltage-gated channels (Na+, K+, Ca2+, Cl?, and HCN), ligand-gated channels (nicotinic acetylcholine and GABAA receptors), non-ion channel genes as well as the mitochondrial DNA genes. These progresses have improved our understanding of the complex neurological disorder.  相似文献   

18.
Quantitative complementation tests provide a quick test of the hypothesis that a particular gene contributes to segregating phenotypic variation. A set of wild-type alleles is assayed for variation in their ability to complement the degree of dominance of the quantitative effect of a loss of function allele. Analysis of 15 loci known to be involved in wing patterning in Drosophila melanogaster suggests that the genes decapentaplegic, thickveins, EGFR, argos and hedgehog, each of which are involved in secreted growth factor signaling, may contribute to wing shape variation. The phenotype of one deficiency, Df(2R)Px2, which removes blistered/Plexate, is also highly sensitive to the wild-type genetic background and at intermediate expressivity reveals six ectopic veins. These form in the same locations as a projection of the ancestral pattern of dipteran wing veins onto the D. melanogaster wing. This atavistic phenotype indicates that the wing vein prepatterning mechanism can be conserved in highly derived species, and implies that homoplasic venation patterns may be produced by derepression of vein primordia. Received: 13 March 2000 / Accepted: 13 August 2000  相似文献   

19.
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes—short, intermediate, and long—with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.  相似文献   

20.
Electrocardiographic QT interval prolongation or shortening is a risk factor for sudden cardiac death. The study of Mendelian syndromes in families with extreme long and short QT interval duration and ventricular arrhythmias has led to the identification of genes encoding ion channel proteins important in myocardial repolarization. Rare mutations in such ion channel genes do not individually contribute substantially to the population burden of ventricular arrhythmias and sudden cardiac death. Only now are studies systematically testing the relationship between common variants in these genes--or elsewhere in the genome--and QT interval variation and sudden cardiac death. Identification of genetic variation underlying myocardial repolarization could have important implications for the prevention of both sporadic and drug-induced arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号