首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep‐sea hydrothermal vents provide ephemeral habitats for animal communities that depend on chemosynthetic primary production. Sporadic volcanic and tectonic events destroy local vent fields and create new ones. Ongoing dispersal and cycles of extirpation and colonization affect the levels and distribution of genetic diversity in vent metapopulations. Several species exhibit evidence for stepping‐stone dispersal along relatively linear, oceanic, ridge axes. Other species exhibit very high rates of gene flow, although natural barriers associated with variation in depth, deep‐ocean currents, and lateral offsets of ridge axes often subdivide populations. Various degrees of impedance to dispersal across such boundaries are products of species‐specific life histories and behaviours. Though unrelated to the size of a species range, levels of genetic diversity appear to correspond with the number of active vent localities that a species occupies within its range. Pioneer species that rapidly colonize nascent vents tend to be less subdivided and more diverse genetically than species that are slow to establish colonies at vents. Understanding the diversity and connectivity of vent metapopulations provides essential information for designing deep‐sea preserves in regions that are under consideration for submarine mining of precious metals.  相似文献   

2.
Based on a phylogenetic analysis of undescribed taxa within the Forcipulatacea, a new family of deep‐sea forcipulatacean starfishes, Paulasteriidae fam. nov., is described from deep‐sea settings. Paulasterias tyleri gen. et sp. nov. was observed at recently documented hydrothermal vents on the East Scotia Ridge, Southern Ocean. A second species, Paulasterias mcclaini gen. et sp. nov. was observed in deep‐sea settings in the North Pacific, more distant from hydrothermal vents. Both species are multi‐armed (with between six and eight arms), with a fleshy body wall, and a poorly developed or absent adoral carina. Here, we include discussions of pedicellariae morphology, feeding biology, and classification. © 2015 The Linnean Society of London  相似文献   

3.
The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep‐sea hydrothermal vent barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern vent fauna. Here, we characterize the global genetic diversity of vent barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction‐site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that vent barnacles have colonized deep‐sea hydrothermal vents at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in vent ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major vent barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of vent taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep‐sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep‐sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep‐sea ecosystems.  相似文献   

4.
Variations in offspring production according to feeding strategies or food supply have been recognized in many animals from various ecosystems. Despite an unusual trophic structure based on non‐photosynthetic primary production, these relationships remain largely under‐studied in chemosynthetic ecosystems. Here, we use Rimicaris shrimps as a study case to explore relationships between reproduction, diets, and food supply in these environments. For that, we compared reproductive outputs of three congeneric shrimps differing by their diets. They inhabit vents located under oligotrophic waters of tropical gyres with opposed latitudes, allowing us to also examine the prevalence of phylogenetic vs environmental drivers in their reproductive rhythms. For this, we used both our original data and a compilation of published observations on the presence of ovigerous females covering various seasons over the past 35 years. We report distinct egg production trends between Rimicaris species relying solely on chemosymbiosis—R. exoculata and R. kairei—and one relying on mixotrophy, R. chacei. Besides, our data suggest a reproductive periodicity that does not correspond to seasonal variations in surface production, with substantial proportions of brooding females during the same months of the year, despite those months corresponding to either boreal winter or austral summer depending on the hemisphere. These observations contrast with the long‐standing paradigm in deep‐sea species for which periodic reproductive patterns have always been attributed to seasonal variations of photosynthetic production sinking from the surface. Our results suggest the presence of an intrinsic basis for biological rhythms in the deep sea, and bring to light the importance of having year‐round observations in order to understand the life history of vent animals.  相似文献   

5.
The hydrothermal vent polychaete Branchipolynoe seepensis lives commensally inside the mantel cavity of the bivalves Bathymodiolus azoricus and Bathymodiolus puteoserpentis that form dense mussel beds around hydrothermal vents on the Mid‐Atlantic Ridge. In order to study its dispersal capabilities and the way individuals develop and reproduce, nine microsatellite polymorphic markers were developed. Polymorphism was tested from three well‐separated populations ranging from 14°N to 35°N along the ridge and showed significant levels of genetic differentiation. Cross‐amplification tests in other polynoid species revealed that most loci could also be useful to study closely related species from both Atlantic and Pacific sites.  相似文献   

6.
The morphology of all larval instars of Fannia canicularis (Linnaeus) (Diptera: Fanniidae) is documented using a combination of light and scanning electron microscopy. The following structures are documented for all instars: antennal complex; maxillary palpus; facial mask; cephaloskeleton; ventral organ; anterior spiracle; Keilin's organ; posterior spiracle; fleshy processes, and anal pad. Structures reported for the first time for all instars include: two pairs of lateral prominences on the prothoracic segment; additional ventrolateral prominences on the second thoracic segment, and a papilla at the base of the posterior spiracle. Other structures reported for the first time are anterior spiracles in the first instar and a serrated tip on the mouthhook in the second instar. A trichoid sensillum on the posterior spiracular plate, representing a sensory organ otherwise unknown in the Calyptratae, is described in the second and third instars. Results are discussed and compared with existing knowledge on dipteran larval morphology.  相似文献   

7.
The stomach of decapods is a complex organ with specialized structures that are delimited by a cuticle. The morphology and ontogeny of the stomach are largely described, but few studies have focused on the morphology of its cuticle. This study examined the morphology of the stomach cuticle of cardiac sacs, gastric mill ossicles, cardio-pyloric valve and pyloric filters, and during various stages (zoea I and II, megalopa, first juvenile, and adult) of the common spider crab Maja brachydactyla using dissection, histology and transmission electron microscopy. The results show that cuticle morphology varies among structures (e.g., cardiac sacs, urocardiac ossicle, cardio-pyloric valve, pyloric filters), within a single structure (e.g., different sides of the urocardiac ossicle) and among different life stages. The cuticle during the larval stages is very thin and the different layers (epicuticle, exocuticle, and endocuticle) are infrequently distinguishable by histology. Major changes during larval development regarding cuticle morphology are observed after the molt to megalopa, including the increment in thickness in the gastric mill ossicles and cardio-pyloric valve, and the disappearance of the long thickened setae of the cardio-pyloric valve. The cuticle of all the stomach structures in the adults is thicker than in larval and juvenile stages. The cuticle varies in thickness, differential staining affinity and morphology of the cuticle layers. The structure–function relationship of the cuticle morphology is discussed.  相似文献   

8.
Cattle sucking lice, Linognathus vituli (L.) (Phthiraptera: Linognathidae), were obtained from naturally infected cattle and maintained within ‘arenas’ affixed to the backs of cattle confined in controlled environment chambers maintained at a constant temperature of 15 °C. Temperatures measured within the arenas at an ambient temperature of 15 °C were constant at about 34 °C and only slightly above the temperature on nearby skin. The effect of temperature on egg development was determined using a gradient of temperatures between 25 °C and 41 °C. Eggs did not develop at temperatures of < 26 °C or > 39 °C. Survival of eggs was highest at temperatures of 30 °C and 35 °C. The earliest hatch was observed at 5 days post‐oviposition (at 33–35 °C). Development was extended to as long as 13 days at the lower temperatures. Kaplan–Meier survival probabilities were compared for lice kept at two densities in the arenas and showed there to be no effect of density on louse survival. Similarly, the mean number of eggs/louse/day over an 8‐day period was not influenced by louse density.  相似文献   

9.
Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is a sub‐cosmopolitan species. Native to Asia, it has been released during the 20th century for classical and augmentative biological control of several herbivorous insects, mostly aphids and coccids. Despite its recognized positive impact on biological control, H. axyridis is now considered among the most dangerous invasive species in Europe and in most places where it has established. This is mostly due to its ability to reduce the populations of native predatory species of the same trophic guild. When exploring a new area, H. axyridis adults use semiochemical cues to acquire information about the habitat. Presumably, these cues are perceived by the sensilla located on the antennae. Surprisingly, in spite of the huge literature existing on H. axyridis, the antennal sensory organs have been poorly characterized. Here, we used scanning and transmission electron microscopy (SEM, TEM) techniques to study H. axyridis antennae, with focus on the various types of sensilla and their distribution in male and female individuals. The presence of various classes of antennal sensilla belonging to the main types described in insects (chemoreceptors, mechanoreceptors, and thermo‐hygroreceptors) was highlighted, as well as the widespread presence of antennal glands. The investigations showed some peculiar characteristics not known in Coccinellidae, such as the concentration of sensory structures at the level of the distal part of the apical antennomere and the discovery of antennal glands associated with it. No sexual dimorphism was revealed, neither for the general structure of the antenna (similar number of antennomeres and presence of modifications), nor for the total length and width of the antenna, the relative size of the antennomeres, the types of antennal sensilla, of their distribution and abundance. The potential relevance of these sensory structures and antennal glands, reported for the first time in Coccinellidae, is discussed in the context of intra‐ and interspecific communication.  相似文献   

10.
Specimens of the deep‐sea sipunculan Phascolosoma turnerae were retrieved over a 5‐year period from fibrous collectors placed for various time intervals at a depth of 520 m in the Tongue of the Ocean, Bahamas. Sipunculans removed from the collectors were counted, weighed, and maintained in the laboratory at 14°C, where they were monitored for gametogenic activity, spawning, development, and growth. In a 2‐year study of seasonality, worms were most abundant in collectors retrieved in the spring and summer, and least abundant in the fall. Small animals (<0.01 g) were present in all seasons and represented ≥70% of the animals in winter collections. Large specimens (>0.16 g) were found from May through August, but in markedly lower frequencies than small animals. Over the entire study, spawning was observed in the laboratory from April through August. We inferred from analyses of size frequencies, growth, and spawning seasonality that settlement of the larvae occurs primarily from November through April and that oceanic larval life could be as short as 7 months and as long as 12–14 months. Cleavage of fertilized eggs, as observed from laboratory spawnings, was spiral and holoblastic, resulting in a trochophore that transformed into a typical planktotrophic pelagosphera larva at 21 d. A few larvae survived as long as 2 months in the laboratory. This is the first study of biological processes in living sipunculans from the deep sea, and one of the first studies of living deep‐sea wood dwellers.  相似文献   

11.
The free-swimming early larval stages of Argulus foliaceus (Linneaus) (Branchiura) are studied using digital video, light microscopy, and SEM. We analyze and document the mode of swimming in the hatching stage of A. foliaceus and the subsequent juvenile stages with fully developed thoracopods. We present new observations and an analysis of the functional morphology of a cleaning behavior in the first stage. This stage swims very efficiently using the large exopods of the second antennae in concert with the mandibular palp (naupliar limbs), while the subsequent stages use the now developed thoracopods for propulsion. This posterior shift in propulsion is similar to--but independent from--what is seen in other crustaceans. The hatching stage has previously been referred as a "metanauplius" but as the first and second maxillae are developed and active, and buds of all four thoracopods are present, it is too advanced to be included in the naupliar phase. The hooks of the first antennae and the distal hooks of the maxillae are demonstrated to function not only as attachment organs (to the host), but also to play a significant role in the cleaning of the naupliar swimming appendages. A digital video-based analysis of the swimming mode is provided. The larval swimming pattern is generally similar to that of other crustaceans such as Branchiopoda and Cirripedia, but autapomorphies of the Branchiura include the following: 1) While actively swimming, the naupliar appendages are almost straight during the recovery stroke and 2) they have a relatively small deflection during movement ( approximately 25 degrees or approximately 35 degrees for mandible and second antenna respectively), 3) the larval mandible has a uniramous palp which is the retained exopod. The morphological implications of the transition from the possibly nonfeeding pelagic, or free-swimming, first larval stage to the feeding, parasitic second stage are discussed and compared with other crustaceans.  相似文献   

12.
The ability of highly ordered tripeptide structures to keep or change their morphology in contact with organic vapors was studied. A thin film of tripeptide l ‐leucyl‐l ‐leucyl‐l ‐leucine (LLL) was prepared having microcrystals and nanocrystals on its surface, which are stable upon vacuum drying but become objects of selective morphology change after a contact with vapors of organic solvents. Fine separate LLL crystals and their agglomerates of submicron and larger dimensions were observed by atomic force microscopy and scanning electron microscopy. After saturation with guest vapors, these crystals can remain intact or change their morphology with the increase in size or complete destruction depending on the guest molecular structure. The crystals completely lose their shape after the binding of pyridine vapors. The other studied guests produce much smaller transformations or have no effect on crystal morphology despite being sorbed by solid LLL, which was shown using quartz crystal microbalance sensor. The observed size‐exclusion effect for guest sorption by LLL was found to be broken by the same guests that can change the initial crystal shape. This helps to explain the morphology changes of LLL crystals after the guest sorption and release. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
《Journal of morphology》2017,278(4):523-546
Male clam shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, and Cyclestherida) have their first one or two trunk limb pairs modified as “claspers,” which are used to hold the female during mating and mate guarding. Clasper morphology has traditionally been important for clam shrimp taxonomy and classification, but little is known about how the males actually use the claspers during amplexus (clasping). Homologies of the various clasper parts (“movable finger,” “large palp,” “palm,” “gripping area,” and “small palp”) have long been discussed between the three clam shrimp taxa, and studies have shown that only some structures are homologous while others are convergent (“partial homology”). We studied the clasper functionality in four spinicaudatan species using video recordings and scanning electron microscopy, and compared our results with other clam shrimp groups. General mating behavior and carapace morphology was also studied. Generally, spinicaudatan and laevicaudatan claspers function similarly despite some parts being nonhomologous. We mapped clasper morphology and functionality aspects on a branchiopod phylogeny. We suggest that the claspers of the three groups were adapted from an original, simpler clasper, each for a “stronger” grip on the female's carapace margin: 1) Spinicaudata have two clasper pairs bearing an elongated apical club/gripping area with one setal type; 2); Cyclestherida have one clasper pair with clusters of molariform setae on the gripping area and at the movable finger apex; and 3) Laevicaudata have one clasper pair, but have incorporated an additional limb portion into the clasper palm and bear a diverse set of setae. J. Morphol. 278:523–546, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
In crustaceans, grooming behaviors decrease fouling by removing debris from the exoskeleton and body structures; these grooming behaviors improve respiration, sensory reception, movement, and reproduction. Setal morphologies of the following grooming appendages in the decapod crustacean spider crab Libinia dubia are examined including the first pereiopod (cheliped), first, second, and third maxillipeds (mouthparts), and first, second, and third epipods (internal extensions of the maxillipeds). The objective of this study was to describe setal morphologies of these grooming appendages and to elucidate possible functions and efficiencies of setal structures. Spider crabs are hypothesized to have elaborate setal morphologies, mainly for cleaning specialized decorating setae as well as for cleaning inside the gill chamber, which has a higher likelihood of becoming fouled compared to other decapods such as shrimps. Fourteen setal types are documented and included several varieties of serrate and pappose setae as well as simple setae, cuspidate setae, papposerrate setae, and canoe setae. Maxillipodal epipods in the gill chamber are free of fouling, suggesting the setation on the third maxilliped protopod has an efficient functional morphology in removing debris before water enters the gill chamber. Serrate setae may function for detangling and separating structures whereas pappose setae may function for fine detailed grooming. The cheliped is the only grooming appendage that can reach decorating setae and it contains only pappose setae; thus decorating setae is not likely groomed in a manner that would greatly decrease fouling. J. Morphol. 277:1045–1061, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

17.
The development and release of the unique vegetative propagules of the freshwater encrusting alga Hildenbrandia angolensis Welwitsch ex West et West, gemmae, were studied using several different microscopic and histochemical techniques. In addition, the seasonality of gemma production was monitored bimonthly over a 12‐month period in two spring‐fed streams in Texas, USA. Gemmae differentiate within the thallus and are subsequently released from the surface of the crust. Release of the gemmae most likely occurs by digestion of surrounding cells, as suggested by the presence of starch granules and lipid globules in the region between the released gemma and the thallus. The initial separation of the gemmae from the thallus occurs from the sides of the gemma or the bottom, or possibly simultaneously. Contrary to previous studies, we have observed that gemma production occurs endogenously within the thallus of freshwater Hildenbrandia, rather than on the surface of the crust in raised structures. Histochemical tests and electron microscopic examination indicate that the cells of the gemmae contain a large amount of floridean starch. The starch granules frequently form rings surrounding the nuclei of both gemma and thallus cells; a feature infrequently reported for florideophyte red algae. Our seasonality investigations indicate that large fluctuations in gemma production occur over 1 year, but at least some gemma production continues year‐round in the streams examined.  相似文献   

18.
The pollen morphology of 11 species (including two subspecies and two varieties) belonging to two genera (Helianthemum and Fumana) of the family Cistaceae in Egypt was studied using light and scanning electron microscopy.Pollen grains of the studied taxa were found to be radially symmetrical and tricolporate.Pollen size,shape,apertures,and exine ornamentation characteristics were valuable parameters among the studied taxa.The largest pollen size was recorded in H.salicifolium and the smallest one observed in H.kahiricum subsp,schweinfurthii.Pollen shape in the Egyptian taxa varied from (sub-)prolate to prolate spheroidal,but F.arabica is different in having sub-oblate grains.The pollen data confirm that H.lippii and H.sessiliflorum are very closely related species.Pollen sculpture was useful in distinguishing between H.vesicarium var.vesicarium and H.vesicarium var.ciliatum.Three main pollen types of exine ornamentation were recognized:retipilate; reticulate to verrucate; and striate.Based on palynological data,a key for the studied taxa is suggested.  相似文献   

19.
Melanin pigments contained in organelles (melanosomes) impart earthy colors to feathers. Such melanin‐based colors are distributed across birds and thought to be the ancestral color‐producing mechanism in birds. However, we have had limited data on melanin‐based color and melanosome diversity in Palaeognathae, which includes the flighted tinamous and large‐bodied, flightless ratites and is the sister taxon to all other extant birds. Here, we use scanning electron microscopy and spectrophotometry to assess melanosome morphology and quantify reflected color for 19 species within this clade. We find that brown colors in ratites are uniquely associated with elongated melanosomes nearly identical in shape to those associated with black colors. Melanosome and color diversity in large‐bodied ratites is limited relative to other birds (including flightless penguins) and smaller bodied basal maniraptoran dinosaur outgroups of Aves, whereas tinamous show a wider range of melanosome forms similar to neognaths. The repeated occurrence of novel melanosome forms in the nonmonophyletic ratites suggests that melanin‐based color tracks changes in body size, physiology, or other life history traits associated with flight loss, but not feather morphology. We further anticipate these findings will be useful for future color reconstructions in extinct species, as variation in melanosome shape may potentially be linked to a more nuanced palette of melanin‐based colors.  相似文献   

20.
Deep‐sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents and cold seeps. In this study, three mitochondrial DNA fragments (the cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) were concatenated as a mitochondrial concatenated dataset (MCD) to examine the genetic diversity, population structure, and demographic history of Shinkaia crosnieri and Bathymodiolus platifrons. The genetic diversity differences between vent and seep populations were statistically significant for S. crosnieri but not for B. platifrons. S. crosnieri showed less gene flow and higher levels of genetic differentiation between the vent and seep populations than B. platifrons. In addition, the results suggest that all the B. platifrons populations, but only the S. crosnieri vent populations, passed through a recent expansion or bottleneck. Therefore, different population distribution patterns for the two dominant species were detected; a pattern of population differentiation for S. crosnieri and a homogeneity pattern for B. platifrons. These different population distribution patterns were related to both extrinsic restrictive factors and intrinsic factors. Based on the fact that the two species were collected in almost identical or adjacent sampling sites, we speculated that the primary factors underlying the differences in the population distribution patterns were intrinsic. The historical demographics, dispersal ability, and the tolerance level of environmental heterogeneity are most likely responsible for the different distribution patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号