共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N. J. Marshall 《Journal of fish biology》1996,49(SA):239-258
The distribution and ultrastructure of the lateral line systems in three taxonomically dispersed deep-sea fish are described: Poromitra capito, Melanonus zugmayeri and Phrynichthys wedli. They are meso- to bathpelagic and are thought to feed on small crustaceans and fish. All possess highly developed lateral line systems, a feature associated with life in the deep sea. Poromitra capito and M. zugmayeri exhibit widened head canals which are connected to the outside by large pores and which contain around 60 large neuromasts. Each neuromast consists of a cupula, shield-shaped mantle and a sensory plate containing hundreds to thousands of hair cells. Direction of sensitivity is in the long axis of the canal (perpendicular to the long axis of the mantle). Depending on their position on the sensory plate, the hair cells have different morphologies. They fall into three basic classes which, from comparison with past work, may be tuned to different frequencies. Alternatively, the various hair cell morphologies could be interpreted as being members of a developmental or growth sequence. Phrynichthys wedli has no canal organs, these being replaced secondarily by many superficial neuromasts placed on prominent papillae in rows which cover much of the 'head' and body. Direction of sensitivity is along the axis of the neuromast row. An extreme proliferation of superficial neuromasts are also found on the heads of P. capito and M. zugmayeri and these are of a type not described before. They consist of stitches, raised on papillae in M. zugmayeri and several mm long in P. capito , in which continuous lines of hair cells, two to three cells wide, are embedded. Direction of sensitivity is perpendicular to the long axis of the stitch. Based on the structure and direction of sensitivity, possible functional implications of all the neuromast types described are compared and discussed. 相似文献
3.
Roberto Rodríguez-Morales; 《Ecology and evolution》2024,14(4):e11286
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed. 相似文献
4.
Hernández PP Olivari FA Sarrazin AF Sandoval PC Allende ML 《Developmental neurobiology》2007,67(5):637-654
Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum-based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts. 相似文献
5.
Jacqueline F. Webb Nathan C. Bird Lauren Carter Juleen Dickson 《Journal of morphology》2014,275(6):678-692
6.
《Current biology : CB》2020,30(1):150-157.e3
- Download : Download high-res image (116KB)
- Download : Download full-size image
7.
Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes
Julia Peloggia Daniela Münch Paloma Meneses-Giles Andrés Romero-Carvajal Mark E. Lush Nathan D. Lawson Melainia McClain Y. Albert Pan Tatjana Piotrowski 《Developmental cell》2021,56(9):1296-1312.e7
- Download : Download high-res image (161KB)
- Download : Download full-size image
8.
Gina C. Pisano Samantha M. Mason Nyembezi Dhliwayo Robert V. Intine Michael P. Sarras Jr. 《Journal of visualized experiments : JoVE》2014,(86)
Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al.17 that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required. 相似文献
9.
Examination of the lateral line canals in the Epaulette Shark reveals a much more differentiated sensory system than previously reported from any elasmobranch. Two main types of lateral line canals are found. In one type rounded patches of sensory epithelia are separated by elevations of the canal floor. The other type is a straight canal without restrictions and with an almost continuous sensory epithelium. In addition, we found epithelia (type A) with very long apical microvilli on the supporting cells. These microvilli reach beyond the stereovilli of the hair cells. Another type (B) of sensory epithelium has short microvilli on the supporting cells. In this latter type of epithelium the stereovilli of the hair cells are comparatively tall and reach out beyond the supporting cell microvilli.
New hair cells are found widely in both types of sensory epithelia. These always occur as single cells, unlike those described in teleost lateral line canal sensory epithelia where new hair cells seem to form in pairs. Dying hair cells are also widespread, indicating a continuous turnover of hair cells. 相似文献
New hair cells are found widely in both types of sensory epithelia. These always occur as single cells, unlike those described in teleost lateral line canal sensory epithelia where new hair cells seem to form in pairs. Dying hair cells are also widespread, indicating a continuous turnover of hair cells. 相似文献
10.
Melanie Beckmann Tibor Ers Anke Schmitz Horst Bleckmann 《International Review of Hydrobiology》2010,95(3):273-284
This paper gives the first detailed data on the number and body part related distribution of superficial neuromasts in twelve common European Cypriniform species and examines whether such anatomical variables can be related to rough scale habitat occurrence. The fishes (Barbatula barbatula, Barbus barbus, Chondrostoma nasus, Cobitis taenia, Leuciscus cephalus, Leuciscus leuciscus, Phoxinus phoxinus, Rutilus rutilus, Rhodeus sericeus, Scardinius erythrophthalmus, Tinca tinca, Vimba vimba) were classified in two generalized ‘ecological guilds’, 1) rheophilic and 2) limnophilic or indifferent, based on literature data. The total number of superficial neuromasts was consistent within each species, but differed considerably between species. Lowest numbers of superficial neuromasts were found in Barbatula barbatula (21 ± 4.9 superficial neuromasts per cm body length) (mean ± SD), highest numbers in Vimba vimba (233 ± 36.1). Both species can be classified as rheophilic. Over all no relationship was found between the total number of superficial neuromasts and large scale habitat occurrence. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental importance for the differentiation and survival of sensory cells. 相似文献
12.
《Developmental cell》2022,57(6):799-819.e6
- Download : Download high-res image (244KB)
- Download : Download full-size image
13.
Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator''s strike. Using a novel device, the impulse chamber, zebrafish (Danio rerio) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13–15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes. 相似文献
14.
Distribution, morphology, and orientation of superficial neuromasts and polarization of the hair cells within superficial neuromasts of the goldfish (Carassius auratus) were examined using fluorescence labeling and scanning electron microscopy. On each body side, goldfish have 1,800-2,000 superficial neuromasts distributed across the head, trunk and tail fin. Each superficial neuromast had about 14-32 hair cells that were arranged in the sensory epithelium with the axis of best sensitivity aligned perpendicular to the long axis of the neuromast. Hair cell polarization was rostro-caudal in most superficial neuromasts on trunk scales (with the exception of those on the lateral line scales), or on the tail fin. On lateral line scales, the most frequent hair cell polarization was dorso-ventral in 45% and rostro-caudal in 20% of the superficial neuromasts. On individual trunk scales, superficial neuromasts were organized in rows which in most scales showed similar orientations with angle deviations smaller than 45 degrees . In about 16% of all trunk scales, groups of superficial neuromasts in the dorsal and ventral half of the scale were oriented orthogonal to each other. On the head, most superficial neuromasts were arranged in rows or groups of similar orientation with angle deviations smaller than 45 degrees . Neighboring groups of superficial neuromasts could differ with respect to their orientation. The most frequent hair cell polarization was dorso-ventral in front of the eyes and on the ventral mandible and rostro-caudal below the eye and on the operculum. 相似文献
15.
Elasmobranchs possess a multiplicity of mechanisms controlling posture and short distance orientation. Visual–vestibular contributions to posture and locomotion are well documented. So too, are the contributions of vision, olfaction and the octavolateralis senses to short distance orientation, particularly orientation to specific environmental stimuli such as those generated by prey. Less well understood are the mechanisms guiding orientation over longer distances. Anecdotal and systematic observations of behaviour show tidal, daily, repeat long distance, and even seasonal movement patterns. True navigation has not been demonstrated in elasmobranchs and the sensory mechanisms underlying the above movement patterns remain largely speculative. However, they are likely to include responses to water currents, and physical parameters such as temperature, pressure, and the geomagnetic field. Of particular interest in elasmobranchs is that geomagnetic orientation could be mediated directly via a magnetite based sensory system, or indirectly via the electrosensory system. Systematic studies of movement patterns and experimental studies of the underlying mechanisms of orientation are required to gain an increased understanding of orientation and navigation in this intriguing group. 相似文献
16.
Coloration in three of four species of the genus Neurergus including N. microspilotus is characterized by the presence of yellow spots on a dark skin, but there is no available information about changes in spot configuration, speed of development and degree of association between melanophore‐free region and the lateral line. In this study, spot numbers, spot circularity, spot size and spot asymmetry were studied during larval to adult growth in N. microspilotus during July 2012 to June 2015. The mean numbers of spots increased during the late larval stage till postmetamorphic period from 13.33 ± 3.77 to 22.53 ± 4.09 and reached 42.62 ± 4.06 in adults. At the same time, the extent of spots gradually decreased in size from 5.80 ± 1.00 to 3.57 ± 0.97 mm2 and reached 3.55 ± 1.42 mm2 in adults, but the spot circularity increased from 0.48 ± 0.23 to 0.78 ± 0.49 and reached 0.80 ± 0.15 in adults. In adults, the numbers, circularity, size and asymmetry of spots remain stable with little but non‐significant changes during the study period. Histological study shows that formation of a melanophore‐free region correlates with the development of the lateral line receptors. This study demonstrates that the effects of lateral line on chromatophores persist through middle larval stages but diminish as metamorphosis completes. 相似文献
17.
The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an “organ‐pipe” configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc. 相似文献
18.
Trokovic N Herczeg G McCairns RJ Ab Ghani NI Merilä J 《Journal of evolutionary biology》2011,24(7):1546-1558
The mechanosensory lateral line system of fishes is an important organ system conveying information crucial to individual fitness. Yet, our knowledge of lateral line diversity is almost exclusively based on interspecific studies, whereas intraspecific variability and possible population divergence have remained largely unexplored. We investigated lateral line system variability in four marine and five pond populations of nine-spined stickleback (Pungitius pungitius). We found significant differences in neuromast number between pond and marine fish. In particular, three of seventeen lateral line regions (viz. caudal peduncle superficial neuromasts; canal neuromasts from the anterior trunk and caudal peduncle) showed strong divergence between habitats. Similar results were obtained with laboratory-reared individuals from a subset of populations, suggesting that the patterns found in nature likely have a genetic basis. Interestingly, we also found habitat-dependent population divergence in neuromast variability, with pond populations showing greater heterogeneity than marine populations, although only in wild-caught fish. A comparison of neutral genetic (F(ST)) and phenotypic (P(ST)) differentiation suggested that natural selection is likely associated with habitat-dependent divergence in neuromast counts. Hence, the results align with the conclusion that the mechanosensory lateral line system divergence among marine and pond nine-spined sticklebacks is adaptive. 相似文献
19.
Peach MB 《Journal of morphology》2003,256(1):89-102
The distribution of pit organs (free neuromasts) has previously been documented for several species of pelagic sharks, but is relatively poorly known for rays and bottom-dwelling (demersal) sharks. In the present study, the complete distribution of pit organs was mapped in the demersal sharks Heterodontus portusjacksoni, Orectolobus maculatus, Hemiscyllium ocellatum, Chiloscyllium punctatum, and Asymbolus analis, and the rays Rhinobatos typus, Aptychotrema rostrata, Trygonorrhina sp. A, Raja sp. A, and Myliobatis australis. All of these species had pit organs scattered over the dorsolateral surface. The sharks also had \"mandibular\" pit organs (and \"umbilical\" pit organs in C. punctatum and A. analis) on the ventral surface, while pit organs were sparse or absent on the ventral surface of rays. All of the species examined here, except for M. australis, also had a \"spiracular\" group of pit organs adjacent to the eye and/or spiracle. Spiracular pit organs were also recorded for the sawshark Pristiophorus sp. A and the skate Pavoraja nitida, although the remainder of pit organs were not mapped in these species. The distribution and number of pit organs varied both within and among species. Pit organ distribution was asymmetrical in each individual examined, but no particular trend towards left or right \"handedness\" was observed in any species. Although rays have been thought to have fewer pit organs than sharks in general, this was not the case in the present study. All of the species examined here had few pit organs compared to the pelagic sharks previously documented, but it is not clear whether this is due to ecological or phylogenetic causes. 相似文献
20.
Apoptotic Cell Death of a Hybrid Motoneuron Cell Line Induced by Immunoglobulins from Patients with Amyotrophic Lateral Sclerosis 总被引:1,自引:0,他引:1
Maria E. Alexianu A. Habib Mohamed R. Glenn Smith Luis V. Colom Stanley H. Appel 《Journal of neurochemistry》1994,63(6):2365-2368
Abstract: Apoptotic cell death has recently been implicated in diseases involving nonproliferating, terminally differentiated cells such as neurons. Previous experiments have documented that immunoglobulins from patients with amyotrophic lateral sclerosis (ALS) can kill motoneuron-neuroblastoma hybrid cells [ventral spinal cord 4.1 (VSC 4.1)] by a calcium-dependent process. Here, we studied the mechanism of ALS IgG-induced cell death. In the presence of ALS IgG the VSC 4.1 cells undergo cell shrinkage and membrane blebbing, which are morphological features of apoptotic cell death. The damaged cells can be identified by in situ end labeling of nicked DNA and biochemically show laddering on agarose gel electrophoresis. This ALS IgG-triggered process is prevented by cycloheximide, aurintricarboxylic acid, and zinc sulfate. These data demonstrate that immunoglobulins from patients with ALS are able to induce apoptosis in motoneuron hybrid cells and provide a potential mechanism for motoneuron degeneration in human ALS. 相似文献