首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theory of the growth and evolution of feather shape   总被引:2,自引:0,他引:2  
We present the first explicit theory of the growth of feather shape, defined as the outline of a pennaceous feather vane. Based on a reanalysis of data from the literature, we propose that the absolute growth rate of the barbs and rachis ridges, not the vertical growth rate, is uniform throughout the follicle. The growth of feathers is simulated with a mathematical model based on six growth parameters: (1) absolute barb and rachis ridge growth rate, (2) angle of helical growth of barb ridges, (3) initial barb ridge number, (4) new barb ridge addition rate, (5) barb ridge diameter, and (6) the angle of barb ramus expansion following emergence from the sheath. The model simulates growth by cell division in the follicle collar and, except for the sixth parameter, does not account for growth by differentiation in cell size and shape during later keratinization. The model can simulate a diversity of feather shapes that correspond closely in shape to real feathers, including various contour feathers, asymmetrical feathers, and even emarginate primaries. Simulations of feather growth under different parameter values demonstrate that each parameter can have substantial, independent effects on feather shape. Many parameters also have complex and redundant effects on feather shape through their influence on the diameter of the follicle, the barb ridge fusion rate, and the internodal distance. Simulated isochrones-the loci, or sets, of feather cells of the same age-have the same oblique chevron-shaped position in the mature feather as fault bars, which are isochronic defects in the barbules created by a disruptions during development. Accurate simulation of fault bar shape and position confirms the uniform absolute growth rate hypothesis and the general realism of the model. The theory defines a six-parameter feather morphospace, and provides many predictions about the developmental determination of feather shape that can be tested with detailed observations and experiments on developing feathers. This theory also provides testable predictions about the changes in developmental mechanisms required to evolve different feather shapes to accomplish various functions.  相似文献   

2.
L. Alibardi 《Acta zoologica》2007,88(2):101-117
This ultrastructural study on the regenerating feathers of quail describes the cellular organization of the barb ridges responsible for the ramification of adult feathers. Bilateral symmetry of the barb ridges determines the organization of feather cells into feather branching. The length of the barb ridges, derived from the number of cells associated to form the barbule plates, determines the length of the barbule branching. Long chains of barb cells form long barbs that branch from the rachis with an increase of feather size. Supportive cells function as spacers between the barbule cells. New cells derive from stem cells localized in the collar region of the feather follicle, as indicated from the re‐organization of collar cells into barb ridges (a morphogenetic process inherited from that of embryonic feathers), production of an embryonic type of keratin (feather keratin), permanence of periderm granules (typical embryonic organelles) in barb vane ridge cells. Variations in the process of barb ridge morphogenesis allow the fusion of ridges into a rachis. The differentiation of hooklets contributes to the origin of planar feathers. Separation between rachis and merging barb ridges is by supportive cells, derived from the marginal plates of the barb ridges. Speculations on the evolution and diversification of feathers are presented.  相似文献   

3.
The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather''s aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.  相似文献   

4.
A tremendous diversity of avian color displays has stimulatednumerous studies of natural and sexual selection. Yet, the developmentalmechanisms that produce such diversification, and thus the proximatetargets of selection pressures, are rarely addressed and poorlyunderstood. In particular, because feathers are colored duringgrowth, the dynamics of feather growth play a deterministicrole in the variation in ornamentation. No study to date, however,has addressed the contribution of feather growth to the expressionof carotenoid-based ornamentation. Here, we examine the developmentalbasis of variation in ornamental feather shapes in male housefinches (Carpodacus mexicanus)—a species in which carotenoiddisplays are under strong natural and sexual selection. First,we use geometric morphometrics to partition the observed shapevariation in fully grown feathers among populations, ages, degreesof elaboration, ornamental body parts, and individuals. Second,we use a biologically informed mathematical model of feathergrowth to predict variation in shape of ornamental feathersdue to simulated growth rate, angle of helical growth of featherbarbs, initial number of barb ridges, rate of addition of newbarbs, barb diameter, and ramus-expansion angle. We find closeconcordance between among-individual variation in feather shapeand hue of entire ornament, and show that this concordance canbe attributed to a shared mechanism—growth rate of featherbarbs. Predicted differences in feather shape due to rate ofaddition of barbs and helical angle of feather growth explainedobserved variation in ornamental area both among individualsand between populations, whereas differences in helical angleof growth and the number of barbs in the feather follicle explaineddifferences in feather shape between ornamental parts and amongmales of different ages. The findings of a close associationof feather growth dynamics and overall ornamentation identifythe proximate targets of selection for elaboration of sexualdisplays. Moreover, the close association of feather growthand pigmentation not only can reinforce condition-dependencein color displays, but can also enable phenotypic and geneticaccommodation of novel pigments into plumage displays providinga mechanism for the observed concordance of within-populationdevelopmental processes and between-population diversificationof color displays.  相似文献   

5.
In all owl species, the facial plumage forms a parabolic dish, the facial ruff, which is most conspicuous in the the barn owl (Tyto alba). The center of the ruff is formed by auricular feathers. Such feathers are also found on the preaural flaps which cover the ear openings, and in the region of the beak. In this study, we compare the different types of auricular feathers of the barn owl with contour feathers from the neck. Auricular feathers are characterised by an open vane structure and fewer barbs as compared to contour feathers. Auricular feathers also have fewer distal and proximal barbules than contour feathers. The open vane of the auricular feather results from an acute angle between the barb and the basis of the barbules, and from the extension of the pennula parallel to the barbs. These reductions are differently expressed in the three different types of auricular feathers investigated here and correspond with their function (protecting the ruff from dust).  相似文献   

6.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

7.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

8.
Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior–posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown‐group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of “model organisms” to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35).  相似文献   

10.
Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis‐statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [ 1947 ] Biochem Biophys Acta 1:549–562) seminal X‐ray diffraction study that revealed two distinct keratins, β‐ and α‐, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the β‐keratogenic sheath and the α‐keratogenic, supra‐umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto‐ and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is “full of holes. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Feathers confer protection against biophysical agents and determine flying ability. The geometry and arrangement of the barbs, together with the keratin and pigments deposited in the feathers, determine the mechanical stability of the vane, and its stiffness and resistance to abrasive agents. In colour‐polymorphic species, individuals display alternative colour morphs, which can be associated with different foraging strategies. Each morph may therefore require specific flying abilities, and their feathers may be exposed to different abrasive agents. Feathers of differently coloured individuals may thus have a specific structure, and colour pigments may help resist abrasive agents and improve stiffness. We examined these predictions in the barn owl (Tyto alba), a species for which the ventral body side varies from white to dark reddish pheomelanic, and in the number and size of black spots located at the tip of the feathers. White and reddish birds show different foraging strategies, and the size of black feather spots is associated with several phenotypic attributes. We found that birds displaying a darker reddish coloration on the ventral body side deposit more melanin pigments in their remiges, which also have fewer barbs. This suggests that wear resistance increases with darkness, whereas feathers of lighter coloured birds may bend less easily. Accordingly, individuals displaying a lighter reddish coloration on the ventral body side, and those displaying larger black spots, displayed more black transverse bars on their remiges: as larger‐spotted individuals are heavier and longer‐winged birds also have more transverse bars, these bars may reduce feather bending when flying. We conclude that differently coloured individuals produce wing feathers of different strengths to adopt alternative behavioural and life history strategies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 562–573.  相似文献   

12.
Alibardi, L. 2011. Cell junctions during morphogenesis of feathers: general ultrastructure with emphasis on adherens junctions. —Acta Zoologica (Stockholm) 92 : 89–100. The present ultrastructural and immunocytochemical study analyzes the cell junctions joining barb/barbule cells versus cell junctions connecting supportive cells in forming feathers. Differently from the epidermis or the sheath, desmosomes are not the prevalent junctions among feather cells. Numerous adherens junctions, some gap junctions and fewer tight junctions are present among differentiating barb/barbule cells during early stages of their differentiation. Adherens junctions are frequent also among differentiating supportive cells and show weak immunolabeling for both N‐cadherin and neural‐cell adhesion molecule (N‐CAM). Differentiating barb and barbule cells do not show labeled junctions for N‐cadherin and N‐CAM. The labeling occurs at patches in the cytoplasm of supportive cells but is more frequently seen in the external cytoplasm and along the extra‐cellular space (glycocalix) covering the plasma membrane of supportive cells. Labeling for N‐cadherin is also found in medium‐dense 0.1‐ to 0.3‐μm granules present in supportive cells and sometimes is associated with coarse filaments or periderm granules. The study indicates that adherens junctions form most of the transitional connections among supportive cells before their degeneration. Keratinizing barb and barbule cells loose the labeling for adherens junctions (N‐CAM and N‐chaderin) while their adhesion is strengthened by the incorporation of cell junctions in the corneous mass forming the barbules.  相似文献   

13.
Zhang SL  Yang SH  Li B  Xu YC  Ma JH  Xu JF  Zhang XG 《Zoo biology》2011,30(3):342-348
Flight restraint is important for zoos, safaris, and breeding centers for large birds. Currently used techniques for flight restraint include both surgical and non-surgical approaches. Surgical approaches usually cause permanent change to or removal of tendon, patagial membrane, or wing bones, and can cause pain and inflammation. Non-surgical approaches such as clipping or trimming feathers often alter the bird's appearance, and can damage growing blood feathers in fledglings or cause joint stiffness. We observed microstructure of primary feathers of the red-crowned crane (Grus japonensis) and found that the width of barbs is a determinative factor influencing vane stiffness and geometric parameters. We hypothesized that partial longitudinal excision of barbs on the ventral surface of the primary feathers would reduce the stiffness of the vane and render the feathers unable to support the crane's body weight during flight. Furthermore, we hypothesized that this modification of barbs would also change the aerodynamic performance of feathers such that they could not generate sufficient lift and thrust during flapping to enable the bird to fly. We tested this hypothesis on a red-crowned crane that had normal flight capability by excising the ventral margin of barbs on all 10 primaries on the left wing. The bird was unable to take off until the modified feathers were replaced by new ones. Removal of barbs proved to be a simple, non-invasive, low-cost and reversible method for flight restraint. It is potentially applicable to other large birds with similar structural characteristics of primary feathers.  相似文献   

14.
The feathers of birds develop from embryonic epidermal lineages that differentiate during outgrowth of the feather germ. Independent cell populations also form an embryonic epidermis on scutate scales, which consists of peridermal layers, a subperiderm, and an alpha stratum. Using an antiserum (anti-FbetaK) developed to react specifically with the beta (beta) keratins of feathers, we find that the feather-type beta keratins are expressed in the subperiderm cells of embryonic scutate scales, as well as the barb ridge lineages of the feather. However, unlike the subperiderm of scales, which is lost at hatching, the cells of barb ridges, in conjunction with adjacent cell populations, give rise to the structural elements of the feather. The observation that an embryonic epidermis, consisting of peridermal and subperidermal layers, also characterizes alligator scales (Thompson, 2001. J Anat 198:265-282) suggests that the epidermal populations of the scales and feathers of avian embryos are homologous with those forming the embryonic epidermis of alligators. While the embryonic epidermal populations of archosaurian scales are discarded at hatching, those of the feather germ differentiate into the periderm, sheath, barb ridges, axial plates, barbules, and marginal plates of the embryonic feather filament. We propose that the development of the embryonic feather filament provides a model for the evolution of the first protofeather. Furthermore, we hypothesize that invagination of the epidermal lineages of the feather filament, namely the barb ridges, initiated the formation of the follicle, which then allowed continuous renewal of the feather epidermal lineages, and the evolution of diverse feather forms.  相似文献   

15.
Current avian migration patterns in temperate regions have been developed during the glacial retreat and subsequent colonization of the ice‐free areas during the Holocene. This process resulted in a geographic gradient of greater seasonality as latitude increased that favoured migration‐related morphological and physiological (co)adaptations. Most evidence of avian morphological adaptations to migration comes from the analysis of variation in the length and shape of the wings, but the existence of intra‐feather structural adjustments has been greatly overlooked despite their potential to be under natural selection. To shed some light on this question, we used data from European robins Erithacus rubecula overwintering in Campo de Gibraltar (Southern Iberia), where sedentary robins coexist during winter with conspecifics showing a broad range of breeding origins and, hence, migration distances. We explicitly explored how wing length and shape, as well as several functional (bending stiffness), developmental (feather growth rate) and structural (size and complexity of feather components) characteristics of flight feathers, varied in relation to migration distance, which was estimated from the hydrogen stable isotope ratios of the summer‐produced tail feathers. Our results revealed that migration distance not only favoured longer and more concave wings, but also promoted primaries with a thicker dorsoventral rachis and shorter barb lengths, which, in turn, conferred more bending stiffness to these feathers. We suggest that these intra‐feather structural adjustments could be an additional, largely unnoticed, adaptation within the avian migratory syndrome that might have the potential to evolve relatively quickly to facilitate the occupation of seasonal environments.  相似文献   

16.
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers, avian scales, and alligator scales is conserved and phylogenetically primitive to archosaurian integumentary appendages. In feather development, derived patterns of Shh-Bmp2 signaling are associated with the development of evolutionarily novel feather structures. Longitudinal Shh-Bmp2 expression domains in the marginal plate epithelium between barb ridges provide a prepattern of the barbs and rachis. Thus, control of Shh-Bmp2 signaling is a fundamental component of the mechanism determining feather form (i.e., plumulaceous vs. pennaceous structure). We show that Shh signaling is necessary for the formation and proper differentiation of a barb ridge and that it is mediated by Bmp signaling. BMP signaling is necessary and sufficient to negatively regulate Shh expression within forming feather germs and this epistatic relationship is conserved in scale morphogenesis. Ectopic SHH and BMP2 signaling leads to opposing effects on proliferation and differentiation within the feather germ, suggesting that the integrative signaling between Shh and Bmp2 is a means to regulate controlled growth and differentiation of forming skin appendages. We conclude that Shh and Bmp signaling is necessary for the formation of barb ridges in feathers and that Shh and Bmp2 signaling constitutes a functionally conserved developmental signaling module in archosaur epidermal appendage development. We propose a model in which branched feather form evolved by repeated, evolutionary re-utilization of a Shh-Bmp2 signaling module in new developmental contexts. Feather animation Quicktime movies can be viewed at http://fallon.anatomy.wisc.edu/feather.html.  相似文献   

17.
Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection. As typical property of bird feather, herringbone riblets align along the shaft of each feather, which is caused by perfect link of barbs, especially for the primary and secondary feathers of wings. Such herringbone riblets of feather are assumed to have great impact on drag reduction. In this paper, microstructures of secondary feathers of adult pigeons are investigated by SEM, and their structural parameters are statistically obtained. Based on quantitative analysis of feather structure, novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag. In comparison with traditional microgroove riblets and other drag reduction structures, the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16%, much higher than others. Moreover, the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.  相似文献   

18.
Lorenzo Alibardi 《Protoplasma》2017,254(3):1259-1281
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3–4-nm-thick filaments through a different mechanism from that of 8–10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10–12 kDa containing 97–105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14–16 kDa made of 122–146 amino acids), claws and beak proteins (14–17 kDa proteins of 134–164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.  相似文献   

19.
Parasites usurp indispensable resources for birds during a moult, and this is particularly relevant for those parasites residing in host intestines. This might compromise the nutritionally demanding moult and, thus, feather functionality. Although lower feather quality has profound and multifaceted adverse effects on residual fitness, surprisingly, little is known about parasites' effect on feather traits, especially over the longer term. We conducted an aviary experiment by medicating half of a group of naturally infested house sparrows Passer domesticus against intestinal coccidians for 15 months, spanning two consecutive postnuptial moults, whereas the other half was kept infested (i.e. without medication). Coccidian infestation significantly and negatively affected the size of the uropygial gland during the second moulting period compared to the medicated group. Furthermore, wing length was significantly shorter after the second moulting in the non‐medicated compared to the medicated female birds, which indicates that the negative effects of coccidians emerge only after a prolonged exposure to parasite infestation. Non‐medicated birds grew poorer quality flight feathers detected in a large number of feather traits both after the first and second moults. In the case of non‐medicated birds, the primaries were lighter and shorter, and had a smaller vane area, thinner rachis and decreased stiffness, although a higher barb and barbule density, which may have various consequences for fitness through reducing flight performance. Our findings demonstrate that, besides the well‐known immediate consequences for host breeding success, parasites might also have serious, long‐lasting effects through influencing feather quality and, ultimately, fitness of the host. © 2013 The Linnean Society of London  相似文献   

20.
Morphogenesis and expression of the alpha and beta keratin polypeptides are controlled by epidermal-dermal interactions during development of avian skin derivatives. We have examined the relationship between morphogenesis of the embryonic feather and expression of the feather alpha and beta keratins by routine histology, indirect-immunofluorescence, and SDS-PAGE. Initially beta keratins are expressed only in the feather sheath. Following barb ridge morphogenesis beta keratins can be detected in the barb ridge, coincident with the differentiation of barb ridge cells into eight distinct morphological types. Beta keratinization occurs in gradients; from feather apex to base, and from periphery of the barb ridge to the interior. The onset of beta keratinization in the barb ridges is paralleled by an increase in the major feather beta keratin polypeptides, as detected by SDS-PAGE. The alpha keratins are present in both the periderm and feather sheath at early stages of feather development, but become greatly reduced after hatching, when the down feather emerges from the sheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号