共查询到20条相似文献,搜索用时 0 毫秒
1.
The trigeminal, the fifth cranial nerve of vertebrates, represents the rostralmost component of the nerves assigned to pharyngeal arches. It consists of the ophthalmic and maxillomandibular nerves, and in jawed vertebrates, the latter is further divided into two major branches dorsoventrally. Of these, the dorsal one is called the maxillary nerve because it predominantly innervates the upper jaw, as seen in the human anatomy. However, developmentally, the upper jaw is derived not only from the dorsal part of the mandibular arch, but also from the premandibular primordium: the medial nasal prominence rostral to the mandibular arch domain. The latter component forms the premaxillary region of the upper jaw in mammals. Thus, there is an apparent discrepancy between the morphological trigeminal innervation pattern and the developmental derivation of the gnathostome upper jaw. To reconcile this, we compared the embryonic developmental patterns of the trigeminal nerve in a variety of gnathostome species. With the exception of the diapsid species studied, we found that the maxillary nerve issues a branch (nasopalatine nerve in human) that innervates the medial nasal prominence derivatives. Because the trigeminal nerve in cyclostomes also possesses a similar branch, we conclude that the vertebrate maxillomandibular nerve primarily has had a premandibular branch as its dorsal element. The presence of this branch would thus represent the plesiomorphic condition for the gnathostomes, implying its secondary loss within some lineages. The branch for the maxillary process, more appropriately called the palatoquadrate component of the maxillary nerve (V2), represents the apomorphic gnathostome trait that has evolved in association with the acquisition of an upper jaw. J. Morphol. 275:17–38, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
2.
3.
Thurston C. Lacalli 《Acta zoologica》2002,83(2):149-166
Serial and interval electron micrograph series were used to examine the rostral and anterodorsal nerves of 12.5‐day‐old amphioxus larvae and trace selected fibres to their targets in the nerve cord. The nerves contain a variety of fibre types, including axons from at least two types of epithelial sensory cells and neurites derived from dorsal (Retzius) bipolar cells located within the cord. The rostral epithelial cells form basal synapses with a population of peripheral neurites that probably derive from the dorsal bipolar cells, though other sources are possible. Varicosities containing dense‐core vesicles occur at the tip of the rostrum, indicating the presence of efferent innervation at this site. Within the cord, some peripherally derived rostral afferents terminate at the level of the anterior cerebral vesicle, others synapse directly with both motoneurones and the notochord, but those in the largest bundle target the dendrites of the large paired neurones (LPNs) located in the primary motor centre. LPN dendrites also receive synapses from sensory fibres arriving via the anterodorsal nerves, from the anterior‐most of the dorsal bipolar cells, referred to here as tectal cells, and from a single fibre derived from the frontal eye. This convergence of multiple inputs accords with other evidence that the LPNs are key intermediaries in the sensorimotor pathway that activates the larval escape response. The rostral nerves are much larger at metamorphosis, but the ventral tracts that derive from them are still comparatively small. This is because the majority of rostral fibres are diverted into a late‐developing dorsal tract that travels within the cord to the front end of the dorsolateral neuropile, where most of its fibres disperse and form synapses. The positioning of the dorsal and ventral tracts strongly suggests homology with vertebrate olfactory and terminal nerves, respectively. This, and the question of whether the amphioxus central nervous system has anything comparable to the olfactory bulb, a telencephalic structure, is discussed. 相似文献
4.
失血引起兔肾神经和肾上腺交感神经活动的变化 总被引:2,自引:0,他引:2
本文观察了急性失血引起的戊巴比妥钠麻醉兔的肾交感神经活动(RSNA)和肾上腺交感神经活动(AdSNA)的变化。股动脉放血,在10min内使平均动脉压(MAP)下降至5.3kPa。失血过程中RSNA先兴奋后抑制,AdSNA则一直呈兴奋反应,这反应可由动脉压力感受器去神经而消失。失血前和失血后切断迷走神经均可翻转失血引起的RSNA抑制,但不能阻断AdSNA的兴奋反应。静脉注射纳洛酮和延髓腹外侧头端(RVLM)微量注射纳洛酮可翻转失血引起的RSNA抑制,但对AdSNA兴奋反应无显著影响。失血引起心率(HR)和RSNA一样,但不能为纳洛酮所反转。上述结果表明:失血引起的RSNA抑制是由迷走神经传入纤维和阿片肽(尤其是RVLM中的阿片肽)参与所致,而AdSNA的兴奋则与动脉压力感受器传入纤维有关。 相似文献
5.
The gut immune system in the healthy intestine is anti-inflammatory, but can move to a pro-inflammatory state when the gut is challenged by pathogens or in disease. The nervous system influences the level of inflammation through enteric neurons and extrinsic neural connections, particularly vagal and sympathetic innervation of the gastrointestinal tract, each of which exerts anti-inflammatory effects. Within the enteric nervous system (ENS), three neuron types that influence gut immune cells have been identified, intrinsic primary afferent neurons (IPANs), vasoactive intestinal peptide (VIP) neurons that project to the mucosa, and cholinergic neurons that influence macrophages in the external muscle layers. The enteric neuropeptides, calcitonin gene-related peptide (CGRP), tachykinins, and neuromedin U (NMU), which are contained in IPANs, and VIP produced by the mucosa innervating neurons, all influence immune cells, notably innate lymphoid cells (ILCs). ILC2 are stimulated by VIP to release IL-22, which promotes microbial defense and tissue repair. Enteric neurons are innervated by the vagus, and, in the large intestine, by the pelvic nerves. Vagal nerve stimulation reduces gut inflammation, which may be both by stimulation of efferent (motor) pathways to the ENS, and stimulation of afferent pathways that connect to integrating centers in the CNS. Efferent pathways from the CNS have their anti-inflammatory effects through either or both vagal efferent neurons and sympathetic pathways. The final neurons in sympathetic pathways reduce gut inflammation by the action of noradrenaline on β2 adrenergic receptors expressed by immune cells. Activation of neural anti-inflammatory pathways is an attractive option to treat inflammatory bowel disease that is refractory to other treatments. Further investigation of the ways in which enteric reflexes, vagal pathways and sympathetic pathways integrate their effects to modulate the gut immune system and gut inflammation is needed to optimize neuromodulation therapy. 相似文献
6.
目的:探讨迷走神经是否可以作为LPS信息由外周组织传入中枢神经系统的桥梁。方法:将Wistar大鼠随机分组,实验组为膈下迷走神经切断并给予LPS组,三个对照组为假手术生理盐水组,假手术LPS组,膈下迷走神经切断生理盐水组。用数字体温检测仪测定大鼠体温,用玻璃微电极记录正常大鼠和膈下迷走神经切断大鼠给予LPS前后下丘脑室旁核的单位放电。结果:体温变化:实验组大鼠体温变化值与假手术LPS组相比明显降低(P<0.05)。单位放电变化:正常大鼠给予LPS后室旁核单位放电放电频率明显增加,膈下迷走神经切断大鼠给予LPS后室旁核单位放电频率无明显变化,结论:外周LPS信息可能通过迷走神经传递到脑组织。 相似文献
7.
Rainer R. Schoch 《Palaeontology》2002,45(3):627-645
New and rich material of the stereospondyl amphibian Mastodonsaurus giganteus from Kupferzell in southern Germany allows for the first time a detailed study of the neurocranium of this species. Both sections and uncrushed specimens preserved in three dimensions were examined. The sphenethmoid ranges from the sella turcica region far to the anterior almost towards the nasal capsules, which remained unossified. The basisphenoid persisted as cartilage, whose morphology can be traced from imprints in surrounding bones. The otic is a single but complex element which underwent major ontogenetic changes. During development, the posterior braincase became increasingly ossified and finally formed a single, compound unit. In addition, otic and sphenethmoid are broadly co-ossified in large specimens. The basioccipital is present but rudimentary, wedged in between the exoccipital and parasphenoid and without contribution to the occipital condyles. The course of the optic, trigeminal, and facial nerves is studied in detail. The homology of the passages is assessed by means of phylogenetic arguments and comparative anatomical data, based on observations on nearest living crown groups. 相似文献
8.
A. P. CRIPPS F.L.S. 《Zoological Journal of the Linnean Society》1990,100(1):27-71
The investigation of the development of the trigeminal jaw adductor musculature in the turtle Chelydra serpentina documents the early aggregation of muscle rudiments around the innervating nerve branches, probably a consequence of inductive interaction. This may explain the early continuity of the intramandibularis with the intermandibularis muscle. Several aspects of muscle development differ in the turtle as compared to lizards. These differences highlight the fact that conjectures of homology, based on a static topographical correspondence of adult structures, cannot capture the dynamics of the developmental process. The intramandibularis muscle of turtles, comparable to that of crocodiles, represents a plesiomorphous structure which is not homologous to the intramandibularis muscle of lacertoid lizards, a derived feature of the Lacertoidea. A derived feature of the chelonian jaw adductor musculature is the posterodorsal expansion of the external adductor along a supraoccipital crest, developing according to a pattern of Haeckelian recapitulation. Muscle development serves to corroborate the concept of a monophyletic Eureptilia, including diapsids and synapsids, as opposed to the (paraphyletic) Anapsida. The impact of the differentiation of the external adductor into a pulley system on cranial kinesis is analysed in biomechanical terms. 相似文献
9.
10.
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode‐derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD‐A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near‐total loss of cranial sensory neurons. Taken together, our cell‐lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia. 相似文献
11.
钠钾泵抑制剂——哇巴因能引起气道内慢适应感受器异相发放,表现为冲动在正常时的吸气相发放,呼气相终止转变为在呼气相发放,吸气相终止。我们推测异相发放由过度兴奋所致,如果假设正确,那么降低气道压力从而减少对感受器刺激,将能防止异相发放。本工作在麻醉、开胸、机械通气(在呼气末附加3cm水柱的正压)的家兔中记录颈迷走神经中慢适应感受器的单位放电,向感受野注射微量哇巴因(1μmol/L,20μ1),可观察到感受器活动发生变化。感受器放电经历紧张性发放、异相发放、以及不规则发放三个时期,随后放电终止,进入静息状态。在紧张期,感受器呈持续发放,冲动频率随肺部通气变化的波动幅度明显减小。在异相发放期,感受器活动出现突然发放(呼气相)与终止(吸气相),其冲动快速转换于高频发放和静止之间。此时,若撤除呼气末正压而减少气道内压力,感受器活动恢复正常,即冲动频率于气管压峰值时为最高,在呼气相减少或终止。在不规则期,感受器通常处于静止状态,时而出现突发高频冲动,且与呼吸周期无关。可以设想:在吸气相,感受器受到牵拉,引起钠、钙等阳离子内流,产生感受器电位。正常时,由于激活钠泵,将钠离子泵出细胞,使感受器电位回复。当钠泵受到抑制后,钠外流受阻,感受器电位加大。在异相发放期,肺充气时牵拉感受器,进一步增加感受器电位,当它超越了产生动作电位的活动范围后,则感受器因过度去极化而失去兴奋性。 相似文献
12.
Ozan Yetis Ozge Guner Ibrahim Akkaya Ensari Guneli Alper Bagriyanik Serhat Tozburun 《Journal of biophotonics》2022,15(1):e202100197
Laser nerve stimulation using near-infrared laser irradiation has recently been studied in the peripheral nervous system as an alternative method to conventional electrical nerve stimulation. Bringing this method to the vagus nerve model could leverage this emerging stimulation approach to be tested in broader preclinical applications. Here, we report the capability of the laser nerve stimulation method on the rat vagus nerve bundle with a 1505-nm diode laser operated in continuous-wave mode. Studies of the stimulation threshold and laser-induced acute thermal injury to the nerve bundle were also performed to determine a temperature window for safe, reliable and reproducible laser stimulation of the rat vagus nerve bundle. The results show that laser stimulation of the vagus nerve bundle provides reliable and reproducible nerve stimulation in a rat model. These results also confirm a threshold temperature of >42°C with acute nerve damage observed above 46°C. A strong correlation was obtained between the laser time required to raise the nerve temperature above the stimulation threshold and the mean arterial pressure response. Advantages of the method such as non-contact delivery of external stimulus signals at mm scaled distance in air, enhanced spatial selectivity and electrical artefact-free measurements may indicate its potential to counteract the side effects of conventional electrical vagus nerve stimulation. 相似文献
13.
迷走神经对心室功能的调控机制研究进展 总被引:6,自引:0,他引:6
自主神经系统由交感神经系统和副交感神经系统(迷走神经)组成,二者相互拮抗,对哺乳动物心脏的功能调控具有重要的作用。副交感(迷走)神经对心房可产生变时、变传导和变力作用,但是对心室的支配及对心室的调控作用还不清楚。一直以来都存在一个误解,认为交感神经支配心脏的各个部位而副交感神经仅支配心脏的室上性组织,对心室没有支配。近年来的研究显示在一些哺乳动物的心脏上,胆碱能神经在心室也有分布,且对左心室的功能有重要的调控作用。本文从解剖及组织化学、分子生物学和功能学三个方面阐述迷走神经对心室的支配及调控证据,并对心章收缩功能的迷走神经(毒蕈碱)调控及其信号转导途径进行综述。 相似文献
14.
Patterning of the cranial nerves in the chick embryo is dependent on cranial mesoderm and rhombomeric metamerism 总被引:2,自引:1,他引:2
The vertebrate peripheral nervous system (PNS) consists of two groups of nerves that have a metamerical series of proximal roots along the body axis: the branchial and spinal nerves. Spinal nerve metamerism is brought about by the presence of somites, while that of the branchial nerves is, in part, intrinsic to rhombomeres, the segmental compartments of the hind-brain. As the distribution pattern of neural crest cells prefigures the morphology of the PNS, we constructed tissue-recombinant chick embryos in order to determine factors that might regulate the crest cell distribution pattern. When the segmental plate was transplanted between the hind-brain and the head mesoderm before crest cell emigration, it developed into ectopic somites that inhibited the dorsolateral migration of crest cells such that formation of the cranial nerve trunks was disturbed. Even so, proximal portions of the nerve roots were intact. An ectopic graft of lateral mesoderm did not inhibit the directional migration of the crest cells, but allowed their ectopic distribution, resulting in the fusion of cranial nerve trunks. When spinal neurectoderm was transplanted into the hind-brain, the graft behaved like an even-numbered rhombomere and caused the fusion of cranial nerve roots. The identity of the spinal neurectoderm was preserved in the ectopic site analyzed by the immunolocalization of Hoxb-5 protein, a spinal cord marker. We conclude that the spatial distribution of cephalic crest cells is regulated by successive processes that act on their proximal and distal distribution. The migratory behavior of crest cells is achieved partly by an embryonic environment that is dependent upon the presence of somitomeres, which do not epithelialize as somites, in the trunk. 相似文献
15.
Lauren Sallan Sam Giles Robert S. Sansom John T. Clarke Zerina Johanson Ivan J. Sansom Philippe Janvier 《Palaeontology》2017,60(2):149-157
The affinity of Tullimonstrum gregarium, a pincer‐mouthed, soft bodied bilaterian, has been subject to debate since its recovery from Carboniferous coal deposits at Mazon Creek, Illinois. After decades of impasse focused on mollusc, arthropod and annelid attributes, two recent, yet conflicting, high‐profile studies concluded that the ‘Tully Monster’ is a vertebrate, a relative of lampreys or jawed fishes. Here, we find that structures described as supporting vertebrate, and particularly crown vertebrate, affinity face significant challenges from biological, functional and taphonomic perspectives. Problems with comparator choice, interpretation of taphonomic processes at Mazon Creek and estimation of convergence within the bilaterian tree may have misled these recent studies, leading to conclusions which do not accommodate current understanding of the vertebrate record. For example, the absence of taphonomically‐expected synapomorphies in Tullimonstrum (e.g. otic capsules, body pigment) calls into question vertebrate identity and implies that convergence or deeper origins are responsible for vertebrate‐like traits. Further, phylogenetic placement within vertebrates is only made possible by the constraints of a chordate‐only dataset with limited outgroups and use of selective characters. Long‐discussed alternative placements among molluscs (e.g. heteropod gastropods), arthropods (e.g. anomalocarids) or elsewhere within non‐vertebrate deuterostomes are more congruent. Indeed, many of these lineages independently evolved vertebrate‐like traits, including complex eyes and ‘teeth’. Thus, given the totality of evidence, Tullimonstrum should be excluded from the vertebrate crown. Potential assignments for aberrant bilaterians, common throughout the Palaeozoic fossil record, need to be considered in light of the number and likelihood of required exceptions to established schemes. 相似文献
16.
17.
大鼠下丘脑室旁核神经元对电刺激迷走神经的反应 总被引:1,自引:0,他引:1
用玻璃微电极记录了93只大鼠的1059个PVH单位的电活动,观察了电刺激颈部迷走神经对PVH单位自发放电的效应和所引起的PVH单位的诱发反应。电刺激迷走神经分别使46个及10个PVH单位呈诱发兴奋和抑制反应。给予迷走神经以不同强度的刺激时,发现PVH神经元对激活A和C两类纤维的强刺激反应,而对仅激活A类纤维的弱刺激则不反应。PVH单位对电刺激坐骨神经或迷走神经的反应有以下几种:对迷走神经和坐骨神经刺激均作出兴奋或抑制反应;仅对迷走刺激作出兴奋或兴奋-抑制反应,而对坐骨神经刺激不反应;对坐骨神经刺激作出兴奋反应,而对迷走神经刺激不反应。讨论了迷走神经到室旁核的中枢传导特点以及内脏传入和躯体传入信息在PVH单位会聚的可能意义。 相似文献
18.
Key physiological functions of the intestine are governed by nerves and neurotransmitters. This complex control relies on two neuronal systems: an extrinsic innervation supplied by the two branches of the autonomic nervous system and an intrinsic innervation provided by the enteric nervous system. As a result of constant exposure to commensal and pathogenic microflora, the intestine developed a tightly regulated immune system. In this review, we cover the current knowledge on the interactions between the gut innervation and the intestinal immune system. The relations between extrinsic and intrinsic neuronal inputs are highlighted with regards to the intestinal immune response. Moreover, we discuss the latest findings on mechanisms underlying inflammatory neural reflexes and examine their relevance in the context of the intestinal inflammation. Finally, we discuss some of the recent data on the identification of the gut microbiota as an emerging player influencing the brain function. 相似文献
19.
兔心迷走神经传出放电有三种类型:1.与后膈神经传出发放同步的节律性放电。这种节律性发放包含两个时相,第一时相大致与膈神经传出放电同时起止,第二时相在膈神经传出发放后期或发放终止时出现。2.持续性放电,出现在上述节律性放电的间歇期。3.偶然出现的高幅高频暴发放电。这种放电出现时,膈神经传出放电即受到明显的压抑。开放预先夹闭的颈总动脉使心迷走神经传出放电增强。窒息、静脉注射肾上腺素使心迷走神经传出放电增强,心率减慢;扩张肺、过度通气、吸入亚硝酸异戊酯使心迷走神经传出放电减少,心率增快。 相似文献
20.
Organs and structures of the vertebrate head perform a plethora of tasks including visualization, digestion, vocalization/communication, auditory functions, and respiration in response to neuronal input. This input is primarily derived from afferent and efferent fibers of the cranial nerves (sensory and motor respectively) and efferent fibers of the cervical sympathetic trunk. Despite their essential contribution to the function and integration of processes necessary for survival, how organ innervation is established remains poorly understood. Furthermore, while it has been appreciated for some time that innervation of organs by cranial nerves is regulated in part by secreted factors and cell surface ligands expressed by those organs, whether nerves also regulate the development of facial organs is only beginning to be elucidated. This review will provide an overview of cranial nerve development in relation to the organs they innervate, and outline their known contributions to craniofacial development, thereby providing insight into how nerves may shape the organs they innervate during development. Throughout, the interaction between different cell and tissue types will be highlighted. 相似文献