首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal “ lateral‐bender ” pelvis from the “ rod‐like ” pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take‐off forces. We compared iliosacral movements and pelvic motor patterns during jumping in the two pelvic types. Pelvic muscle activity patterns, iliosacral anteroposterior (AP) movements and sagittal bending of the pelvis during the take‐off and landing phases were quantified in lateral bender taxa Ascaphus (Leiopelmatidae) and Rhinella (Bufonidae) and the rod‐like Lithobates (Ranidae). All three species exhibit sagittal extension during take‐off, therefore, both pelvic types employ a sagittal hinge. However, trunk elevation occurs significantly earlier in the anuran rod‐like pelvis. Motor patterns confirm that the piriformis muscles depress the urostyle while the longissimus dorsi muscles elevate the trunk during take‐off. However, the coccygeoiliacus muscles also produce anterior translation of the sacrum on the ilia. A new model illustrates how AP translation facilitates trunk extension in the lateral‐bender anurans that have long been thought to have limited sagittal bending. During landing, AP translation patterns are similar because impact forces slide the sacrum from its posterior to anterior limits. Sagittal flexion during landing differs among the three taxa depending on the way the species land. AP translation during landing may dampen impact forces especially in Rhinella in which pelvic function is tuned to forelimb‐landing dynamics. The flexibility of the lateral‐bender pelvis to function in sagittal bending and AP translation helps to explain the retention of this basal configuration in many anurans. The novel function of the rod‐like pelvis may be to increase the rate of trunk elevation relative to faster rates of energy release from the hindlimbs enabling them to jump farther. J. Morphol. 277:1539–1558, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
The reproductive strategies of frogs are highly diverse, but analysis of these strategies in a phylogenetic context has lagged behind other taxa. Here we investigate associations between aspects of parental care and egg size in a phylogenetic context. We obtained data on egg size and parental care strategies in various species of frogs from the scientific literature. We developed a phylogenetic supertree of frogs by combining the results of multiple phylogenetic analyses using matrix representation parsimony. We used phylogenetic pairwise comparisons to investigate the correlation between various forms of parental care and egg size across the order Anura. We also investigated correlations between tadpole carnivory and egg size, and phytotelm breeding and egg size. We also investigated the association of egg size with several environmental factors. Parental care, male parental care, direct development, stream breeding and montane breeding habitats were all associated with large egg size. Female care (in species with trophic egg feeding), carnivory, use of small pools (phytotelmata) and use of temporary pools were not associated with egg size.  相似文献   

3.
Autotomy is the ability to spontaneously self‐amputate a limb or other appendage, often as a reflexive action. This limb amputation typically occurs as a specialized defensive response to an attack from a predator and thereby enables the prey to escape from predation. Despite the benefits of escape, autotomized organisms lose the body part and its associated function. Here, we investigated the jumping behavior and performance of one‐leg‐autotomized and intact rice grasshoppers, Oxya yezoensis, to examine changes in jumping behavior after autotomy. The take‐off elevation of autotomized grasshoppers was 7.8° lower than in intact grasshoppers, resulting in nearly a 45° angle of take‐off, which maximized the jumping distance. Kinematic analyses of the jumping manner revealed that the angle of the femur during jumping differed between intact and autotomized grasshoppers, suggesting that the grasshoppers behaviorally change the take‐off elevation after autotomy. According to analyses of jumping performance, the degree of decline in performance differed between horizontal distance and vertical height. Even though they jumped on only one hind leg, one‐leg‐autotomized grasshoppers realized 69% performance along a horizontal distance relative to intact grasshoppers. In contrast, autotomized grasshoppers realized only a 44% performance in vertical height compared to intact grasshoppers. The difference in take‐off elevation between autotomized and intact grasshoppers is likely related to the observed difference in the magnitude of the decline in performance between horizontal distance and vertical height. These results suggest that rice grasshoppers may alter their take‐off elevation after limb autotomy to minimize the reduction in jumping distance.  相似文献   

4.
The morphology of the larval hyobranchial apparatus of discoglossoid frog species representing the genera Ascaphus, Alytes, Bombina, and Discoglossus is described and the resulting characters were analysed cladistically. Seven species representing seven major lineages of frogs were included in the cladistic analysis of characters. Several changes in the terminology of the musculature are introduced, and a new interpretation of the subarcualis-muscle system is presented. The phylogenetic analysis suggest that the hyobranchial apparatus was substantially altered in the lineages leading to and within the Pipanura. This notably involved fusion, reduction and loss of skeletal structures and muscles, and splitting of certain muscles into muscle groups. The result confirm previous hypotheses based on the study of adults: discoglossoid species retain the most numlerous plesiomorphic characters among extant ianurans. The larval hyobranchial apparatus is in many features structrually similar to that of urodeles. Many of their character states were most likely present in the most recent common ancestor of all living forgs. The cladistic analysis of 31 characters of ithe larval hyobranchial apparatus supports major clades: Anura, Bombinanura, Pipanura, and Pelobatoidea + Neobatrachia. The cladiostic analysis and interpretation of larval characters is in part compatible with phylogenetic hypotheses based on characters of adults and rRNA sequences, but is in conflict with the Mesobatrachia and Archaeobatrachia concepts of other authors.  相似文献   

5.
The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co‐evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (~400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans.  相似文献   

6.
We studied the timing of the early development of the cranial neural crest, neural tube differentiation, somite formation and body elongation in the closely related frog species Discoglossus montalenti , Discoglossus galganoi , Discoglossus pictus , Bombina orientalis , Bombina variegata and Bombina maxima . Despite their different egg and embryo sizes, event pairing shows that there are only very few heterochronies among the three Bombina species and the three Discoglossus species in early developmental events. Instead, differences become apparent at the genus level (interpreted as phylogenetic signal). For example, the separation into a mandibular and a hyoid portion of cranial neural crest could be seen earlier in the Discoglossus than in the Bombina species when compared with the development of the neural tube. The development of the cranial neural crest streams also shifts (relatively) forward in time when compared with body elongation and somite formation in the Discoglossus species in contrast to the Bombina species. Comparisons with other species show that attempts to correlate heterochronies in early development with life history changes should take into account the possibility of a rather high evolvability, i.e. a high probability of convergence in the timing of these early events.  相似文献   

7.
Environmental factors that influence flight activity of Diaphorina citri Kuwayama (Hemiptera: Liviidae) may have implications for Huanglongbing spread and management. In this work, four studies were conducted to evaluate the effect of environmental conditions on D. citri take‐off. In the first, insects were transferred to sweet orange seedlings and confined inside an acrylic cage to verify the take‐off periodicity and the effect of environmental factors on this process. In the second, take‐off temperature threshold was estimated by recording the number of insects that initiated flight from a platform when subjected to gradual temperature increases from 15 to 39°C. In the other studies, we evaluated the effect of different photoperiods and temperature regimes (third study) and of constant temperatures (fourth study) on the propensity for D. citri flight. Insects were confined in clear plastic bottle cages with tubes of 50 ml placed on the cab, to collect emerged adults that initiated flights. Results showed that a small portion of the tested population (maximum 10%) tends to take off from plants and this behaviour is more prevalent in the afternoon (14:00–16:00 h), coinciding with daytimes of lower humidity and higher thermal amplitude. Adults that were submitted to lower temperatures (18°C) and short light periods (10 h) showed less propensity to flight. In contrast, at constant 27°C, the insects were more prone to flight, and this result was confirmed when individuals were submitted to increases in temperature, indicating that 27.14°C is the take‐off temperature threshold of D. citri. Results show that temperature plays an important role in the flight activity of D. citri and suggest that control measures of the insect may be more effective in the morning and in temperatures below 27°C, when the probability to take off from a host is lower.  相似文献   

8.
The drop vertical jump is a popular plyometric exercise. Two distinct techniques are commonly used to initiate the drop vertical jump. With the ‘step-off’ technique, athletes step off a raised platform with their dominant limb, while their non-dominant limb remains on the platform. In contrast, with the ‘drop-off’ technique, athletes lean forward and drop off the platform, with both feet leaving the platform more simultaneously. The purpose of this study was to compare landing and jumping kinetics, inter-limb kinetic symmetry, and jump performance when individuals used the step-off and drop-off techniques, and to examine whether potential differences between these techniques are affected by platform height. Sixteen subjects completed drop vertical jumps with the drop-off and step-off techniques, from relatively low and high platform heights. Ground reactions forces were recorded for the dominant and non-dominant limbs during the land-and-jump phase of the drop vertical jump. Subjects demonstrated greater inter-limb asymmetry in peak impact forces when using the step-off technique, vs. the drop-off technique. This difference between the techniques was consistent across platform heights. The step-off technique appears to result in greater asymmetry in limb loading, which could contribute to the development of neuromuscular asymmetries between the limbs and/or asymmetric landing patterns.  相似文献   

9.
Jumping performance is relevant for lizards in many ecological contexts and might be favoured during the colonization of structurally complex habitats. Although ground-dwelling lizards use jumps to overcome small obstacles in their natural environments, jumping capacity has been mostly studied in arboreal species. Here, we analysed the evolution of jumping behaviour and performance in lizards from eight ground-dwelling species of Tropidurinae attempting to cross obstacles of different heights in a jumping track, both when undisturbed and under continuous stimulation. To establish ecological correlates with habitat complexity, individuals from two contrasting Brazilian habitats, the arid Caatingas (sand species) and the savannah-like Cerrados (rock species), were compared. Rock species jumped more often and crossed higher obstacles than sand ones in both tests, and performed more vertical than horizontal jumps. Although sand species performed less jumps, they were more successful at crossing the obstacles presented in comparison with rock species. Phylogenetic analyses confirmed these findings and demonstrated a large divergence in jumping capacity between sister-species from different habitats. Therefore, the differences in propensity and endurance for jumping activity appear to be independent of phylogenetic relationships in Tropidurinae and likely reflect an adaptation to the contrasting environments inhabited. The ecological implications of these findings are discussed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 393–402.  相似文献   

10.
Flight directionality of the rust‐red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated under glasshouse and field conditions using sticky traps placed around dense experimental infestations of T. castaneum derived from field‐collected samples. Although beetles of this species are known to fly quite readily, information on flight of beetles away from grain resources is limited. Under still glasshouse conditions, T. castaneum does not demonstrate strong horizontal or vertical trajectories in their initial flight behaviour. Flight was significantly directional in half of the replicates, but trapped beetles were only weakly concentrated around the mean direction of flight. In the field, by contrast, emigration of T. castaneum was strongly directional soon after flight initiation. The mean vector lengths were generally >0.5 which indicates that trapped beetles were strongly concentrated around the calculated mean flight direction. A circular‐circular regression of mean flight vs. mean downwind direction suggested that flight direction was generally correlated with downwind direction. The mean height at which T. castaneum individuals initially flew was 115.4 ± 7.0 cm, with 58.3% of beetles caught no more than 1 m above the ground. The height at which beetles were trapped did not correlate with wind speed at the time of sampling, but the data do indicate that wind speed significantly affected T. castaneum flight initiation, because no beetles (or very few; no more than three) were trapped in the field when the mean wind speed was above 3 m s?1. This study thus demonstrates that wind speed and direction are both important aspects of flight behaviour of T. castaneum, and therefore of the spatio‐temporal dynamics of this species.  相似文献   

11.
Although acoustic signals are important for communication in many taxa, signal propagation is affected by environmental properties. Strong environmental constraints should drive call evolution, favoring signals with greater transmission distance and content integrity in a given calling habitat. Yet, few empirical studies have verified this prediction, possibly due to a shortcoming in habitat characterization, which is often too broad. Here we assess the potential impact of environmental constraints on the evolution of advertisement call in four groups of torrent‐dwelling frogs in the family Ranidae. We reconstruct the evolution of calling site preferences, both broadly categorized and at a finer scale, onto a phylogenetic tree for 148 species with five markers (~3600 bp). We test models of evolution for six call traits for 79 species with regard to the reconstructed history of calling site preferences and estimate their ancestral states. We find that in spite of existing morphological constraints, vocalizations of torrent‐dwelling species are most probably constrained by the acoustic specificities of torrent habitats and particularly their high level of ambient noise. We also show that a fine‐scale characterization of calling sites allows a better perception of the impact of environmental constraints on call evolution.  相似文献   

12.
Across taxa, individuals vary in how far they disperse, with most individuals staying close to their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, risk) are widely believed to trade off with benefits (e.g., reduced competition, increased reproductive success) to influence dispersal propensity. However, this framework has not been applied to understand variation in dispersal distance, which is instead generally attributed to extrinsic environmental factors. We alternatively hypothesized that variation in dispersal distances results from trade‐offs associated with other aspects of locomotor performance. We tested this hypothesis in the stream salamander Gyrinophilus porphyriticus and found that salamanders that dispersed farther in the field had longer forelimbs but swam at slower velocities under experimental conditions. The reduced swimming performance of long‐distance dispersers likely results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer distances, but the proximate costs associated with reduced swimming performance may help to explain the rarity of long‐distance dispersal. The historical focus on environmental drivers of dispersal distances misses the importance of individual traits and associated trade‐offs among traits affecting locomotion.  相似文献   

13.
The allometric relationship between body mass and testis mass was calculated using data from 16 genera (37 species) of African and Japanese frogs. Having controlled for body mass, the relative testis mass of Chiromantis xerampelina, Rhacophorus arboreus and R. schlegelli was considerably heavier than predicted (3.8–14.6 times more). All three species have multi-male breeding. Although the result is consistent with sperm competition having selected for increased sperm production in anurans, the phylogenetic distribution of well documented multi-male spawning is confined to the Rhacophoridae. Thus, multi-male mating may have arisen only once effectively reducing the analysis to two data points. However, in the four foam-nesting Rhacophorids whose breeding behaviour has been studied there is also a correlation between relative testis mass and the intensity of sperm competition. This suggests that even within the Rhacophoridae, sperm competition leads to larger testes. Direct evidence for sperm competition in C. xerampelina is provided by a 'sterile male' experiment, which shows that peripheral males are capable of fertilizing eggs.  相似文献   

14.
15.
Internal organs of ectotherms have melanin‐containing cells that confer different degrees of coloration to them. Previous experimental studies analyzed their developmental origin, role in immunity, and hormonal regulation. For example, melanin increases with ultraviolet radiation (UV) and temperature in frogs and fish. However, little is known about how environmental variables influence the amount of coloration on organs among amphibian species over a large spatial extent. Here, we tested how climatic variables (temperature, UV, and photoperiod) influence the coloration of internal organs of anurans. We recorded the level of melanin pigmentation using four categories on 12 internal organs and structures of 388 specimens from 43 species belonging to six anuran families. Then, we tested which climatic variables had the highest covariation with the pigmentation on each organ after controlling for spatial autocorrelation in climatic variables and phylogenetic signal in organ coloration using the extended version of the RLQ ordination. Coloration in all organs was correlated with the phylogeny. However, the coloration of different organs was affected by different variables. Specifically, the coloration of the heart, kidneys, and rectum of hylids, Rhinella schneideri, some Leptodactylus, and Proceratophrys strongly covaried with temperature and photoperiod, whereas that of the testicle, lumbar parietal peritoneum, lungs, and mesenterium of Leiuperinae, Hylodidae, Adenomera, and most Leptodactylus had highest covariation with UV‐B and temperature. Our results support the notion that melanin pigmentation on the surface of organs of amphibians has an adaptive function conferred by the protective functions of the pigment. But most importantly, internal melanin seems to respond differently to climatic variables depending on the lineage and locality in which species occur.  相似文献   

16.
Phylogenetically informed trait comparisons across entire communities show promise in advancing community ecology. We use this approach to better understand the composition of a community of winter annual plants with multiple decades of monitoring and detailed morphological, phenological and physiological measurements. Previous research on this system revealed a physiological trade‐off among dominant species that accurately predicts population and community dynamics. Here we expanded our investigation to 51 species, representing 96% of individual plants recorded over 30 years, and analysed trait relationships in the context of species abundance and phylogenetic relationships. We found that the functional‐trait trade‐off scales to the entire community, albeit with diminished strength. It is strongest for dominant species and weakens as progressively rarer species are included. The trade‐off has been consistently expressed over three decades of environmental change despite some turnover in the identity of dominant species.  相似文献   

17.
《Journal of morphology》2017,278(5):652-664
Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late‐larval stages, many species, including Rhinella arenarum , have immature glands by the end of metamorphosis, and their post‐metamorphic growth is unknown. Herein, we compared the post‐metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum . Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults.  相似文献   

18.
In molecular biology studies of Anura, nondestructive methods to obtain genetic material are needed as alternatives to toe clipping. This work evaluates a nondestructive method for sampling DNA from blood puncture, comparing the performance of three different extraction protocols (Qiagen Kit, Salting-out and Chelex). We collected 134 individuals of Eleutherodactylus johnstonei, extracting blood via puncture of the medial vein using commercial-grade glucometer lancets. We extracted 100-1880 ng DNA, finding no differences between the extraction protocols. We compared the quality of the resulting DNA through amplification and sequencing of the 16S mitochondrial gene. Amplification was successful for the three extraction protocols, although Chelex showed better performance, making it the most recommendable protocol for extraction of DNA from blood. The resulting sequences corresponded to those registered in the GenBank for this species. Additionally, we found no significant differences in survival or weight change between the individuals that were manipulated and a control group (mean survival 66.7% treated, 62.9% untreated). Data reveal that blood samples obtained by puncture are a convenient alternative to other tissues (phalange, buccal swab, liver) that have traditionally been used as DNA sources for anurans. The technique is applicable to small and large species, covering most anuran diversity, provides enough DNA for many genetic applications and produces no noticeable effect on the survival or performance, given that it does not affect the motor parts or the dexterity of the animals.  相似文献   

19.
Geographic variation in courtship behavior can affect reproductive success of divergent phenotypes via mate choice. Over time, this can lead to reproductive isolation and ultimately to speciation. The Neotropical red‐eyed treefrog (Agalychnis callidryas) exhibits high levels of phenotypic variation among populations in Costa Rica and Panama, including differences in color pattern, body size, and skin peptides. To test the extent of behavioral premating isolation among differentiated populations, we quantified male advertisement calls from six sites and female responses to male stimuli (acoustic and visual signals) from four sites. Our results show that both male advertisement calls and female behavior vary among populations: Discriminant function analyses can predict the population of origin for 99.3% ± 0.7 of males based on male call (dominant frequency and bandwidth) and 76.1% ± 6.6 of females based on female response behavior (frequency and duration of visual displays). Further, female mate choice trials (= 69) showed that population divergence in male signals is coupled with female preference for local male stimuli. Combined, these results suggest that evolved differences among populations in male call properties and female response signals could have consequences for reproductive isolation. Finally, population variation in male and female behavior was not well explained by geographic or genetic distance, indicating a role for localized selection and/or drift. The interplay between male courtship and female responses may facilitate the evolution of local variants in courtship style, thus accelerating premating isolation via assortative mating.  相似文献   

20.
《Journal of morphology》2017,278(6):828-847
Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal‐metatarsal morphology. Here, the tarsal‐metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional‐adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal‐metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal‐metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号