首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent morphometric analyses have led to dissimilar conclusions about whether the jaws of tree-gouging primates are designed to resist the purportedly large forces generated during this biting behavior. We further address this question by comparing the cross-sectional geometry of the mandibular corpus and symphysis in tree-gouging common marmosets (Callithrix jacchus) to nongouging saddleback tamarins (Saguinus fuscicollis) and squirrel monkeys (Saimiri sciureus). As might be expected, based on size, squirrel monkeys tend to have absolutely larger cross-sectional areas at each tooth location sampled, while saddleback tamarins are intermediate, followed by the smaller common marmosets. Similarly, the amount and distribution of cortical bone in squirrel monkey jaws provides them with increased ability to resist sagittal bending (I xx ) and torsion (K) in the corpus as well as coronal bending (I xx ) and shearing in the symphysis. However, when the biomechanical parameters are scaled to respective load arm estimates, there are few significant differences in relative resistance abilities among the 3 species. A power analysis indicates that we cannot statistically rule out subtle changes in marmoset jaw form linked to resisting loads during gouging. Nevertheless, our results correspond to studies in vivo of jaw loading, field data, and other comparative analyses suggesting that common marmosets do not generate relatively large bite forces during tree gouging. The 3 species are like most other anthropoids in having thinner bone on the lingual than on the buccal side of the mandibular corpus at M1. The similarity in corporal shape across anthropoids supports a hypothesized stereotypical pattern of jaw loading during chewing and may indicate a conserved pattern of mandibular growth for the suborder. Despite the overall similarity, platyrrhines may differ slightly from catarrhines in the details of their cortical bone distribution.
Christopher J. VinyardEmail:
  相似文献   

2.
    
In this pilot study, we point out potential differences between calcaneal trabecular microarchitecture in humans and nonhuman large apes, such as increased degree of anisotropy, reduced bone volume fraction, and very stereotypical orientation of the trabeculae. Even though sample size does not permit us to investigate the issue statistically, the observed differences between humans and other hominoids warrants further in-depth investigation. We also show that some measurements of the trabecular network might be dependent on sampling density, which can be difficult to deal with in the case of animals of different body masses. We also present a new visualization technique that summarizes the trabecular network orientation, and makes it more readily interpretable than the summary statistics of the underlying fabric tensor of the orientation matrix.  相似文献   

3.
    
To explore the impact of history on selection and genetic structure at functional loci, we compared patterns of major histocompatibility complex (MHC) variability in two sympatric species of ctenomyid rodents with different demographic backgrounds. Although Ctenomys talarum has experienced a stable demographic history, Ctenomys australis has undergone a recent demographic expansion. Accordingly, we predicted that MHC allele frequency distributions should be more skewed, differences between coding and noncoding regions should be less pronounced, and evidence of current selection on MHC loci should be reduced in C. australis relative to C. talarum. To test these predictions, we compared variation at the MHC class II DRB and DQA genes with that at multiple neutral markers, including DQA intron 2, the mitochondrial control region, and 8–12 microsatellite loci. These analyses supported the first two of our predictions but indicated that estimates of selection (based on ω‐values) were greater for C. australis. Further exploration of these data, however, revealed differences in the time frames over which selection appears to have acted on each species, with evidence of contemporary selection on MHC loci being limited to C. talarum. Collectively, these findings indicate that demographic history can substantially influence genetic structure at functional loci and that the effects of history on selection may be temporally complex and dynamic. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 260–277.  相似文献   

4.
    
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome‐b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA. Am. J. Primatol. 69:46–58, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

5.
In this work we examined the phylogeography of the South American subterranean herbivorous rodent Ctenomys talarum (Talas tuco-tuco) using mitochondrial DNA (mtDNA) control region (D-loop) sequences, and we assessed the geographical genetic structure of this species in comparison with that of subterranean Ctenomys australis, which we have shown previously to be parapatric to C. talarum and to also live in a coastal sand dune habitat. A significant apportionment of the genetic variance among regional groups indicated that putative geographical barriers, such as rivers, substantially affected the pattern of genetic structure in C. talarum. Furthermore, genetic differentiation is consistent with a simple model of isolation by distance, possibly evidencing equilibrium between gene flow and local genetic drift. In contrast, C. australis showed limited hierarchical partitioning of genetic variation and departed from an isolation-by-distance pattern. Mismatch distributions and tests of neutrality suggest contrasting histories of these two species: C. talarum appears to be characterized by demographic stability and no significant departures from neutrality, whereas C. australis has undergone a recent demographic expansion and/or departures from strict neutrality in its mtDNA.  相似文献   

6.
Bite force was quantified for 13 species of North American rodents using a piezo-resistive sensor. Most of the species measured (11) formed a tight relationship between body mass and bite force (log 10(bite force)=0.43(log 10(body mass))+0.416; R 2>0.98). This high correlation exists despite the ecological (omnivores, grazers and more carnivorous) and taxonomic (Cricetidae, Heteromyidae, Sciuridae and Zapodidae) diversity of species. Two additional species, Geomys bursarius (Geomyidae) and a Sciurus niger (Sciuridae), bit much harder for their size. We found a simple index of strength based on two measurements of the incisor at the level of the alveolus ( Zi =((anterior-posterior length)2× (medial-lateral width))/6) that is highly predictive of bite force in these rodents (R2>0.96). Zi may be useful for prediction of bite force (log10 (Bite Force)=0.566log10 ( Zi )+1.432) when direct measurements are not available.  相似文献   

7.
    
The robust skull and highly subdivided adductor mandibulae muscles of triggerfishes provide an excellent system within which to analyze the evolutionary processes underlying phenotypic diversification. We surveyed the anatomical diversity of balistid jaws using Procrustes‐based geometric morphometric analyses and a phylomorphospace approach to quantifying morphological transformation through evolution. We hypothesized that metrics of interspecific cranial shape would reveal patterns of phylogenetic diversification that are congruent with functional and ecological transformation. Morphological landmarks outlining skull and adductor mandibulae muscle shape were collected from 27 triggerfish species. Procrustes‐transformed skull shape configurations revealed significant phylogenetic and size‐influenced structure. Phylomorphospace plots of cranial shape diversity reveal groupings of shape between different species of triggerfish that are mostly consistent with phylogenetic relatedness. Repeated instances of convergence upon similar cranial shape by genetically disparate taxa are likely due to the functional demands of shared specialized dietary habits. This study shows that the diversification of triggerfish skulls occurs via modifications of cranial silhouette and the positioning of subdivided jaw adductor muscles. Using the morphometric data collected here as input to a biomechanical model of triggerfish jaw function, we find that subdivided jaw adductors, in conjunction with a unique cranial skeleton, have direct biomechanical consequences that are not always congruent with phylomorphospace patterns in the triggerfish lineage. The integration of geometric morphometrics with biomechanical modeling in a phylogenetic context provides novel insight into the evolutionary patterns and ecological role of muscle subdivisions in triggerfishes. J. Morphol. 277:737–752, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Whole-body fields were tested for their efficacy in preventing the osteopenia caused by tail suspension in mice. The fields had fundamental frequencies corresponding to the upper range of predicted endogenous impact-generated frequencies (0.25–2.0 kHz) in the long bones. Three distinct whole-body EMFs were applied for 2 weeks on growing mice. Structural, geometric, and material properties of the femora, tibiae, and humeri of suspended mice were altered compared to controls. Comparison of suspended mice and mice subjected to caloric restriction indicates that the changes in caloric intake do not explain either the suspension or the field-induced effects. In agreement with past studies, rather, unloading appears to cause the suspension effects and to be addressed by the EMFs. The EMF effects on bone properties were apparently frequency dependent, with the lower two fundamental frequencies (260 and 910 Hz) altering, albeit slightly, the suspension-induced bone effects. The fields are not apparently optimized for frequency, etc., with respect to therapeutic potential; however, suspension provides a model system for further study of the in vivo effects of EMFs. © 1995 Wiley-Liss, Inc.  相似文献   

9.
    
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
11.
    
In a comparative study of variation in primate skulls, Wood and Lieberman ([ 2001 ] Am. J. Phys. Anthropol. 116:13–25) proposed that a predictable relationship exists between in vivo bone‐strain magnitudes and the extent of morphological variation in skeletal structures. They hypothesized that regions subject to high strains are prone to enhanced levels of variation. Three questions are posed with respect to the plausibility of this hypothesis. First, does the proposed relationship hold at different levels of analysis (e.g., for more restricted anatomical regions in which large strain gradients are present)? Second, is the biomechanical rationale for the hypothesis sound, given the current understanding of bone biology? Third, is the hypothesis obviated by consideration of the functional matrix concept of skull development, in which osseous growth is posited to be governed by surrounding soft tissues (e.g., muscle and tendon) and developing spaces (e.g., the nasal capsule)? The different perspectives explored by these questions suggest that the validity of the hypothesis, despite having a defensible theoretical rationale, is likely to be context‐specific. A direct role for strain magnitude in conditioning morphological variation is difficult to demonstrate either comparatively or theoretically, and it is unlikely that a single strain threshold or interval can be directly associated with elevated variation in the skeleton. The conceptual framework of the functional matrix (which allows for independent growth among different regions of the skull) conceivably contravenes the premise of a uniform relationship of strain magnitude to morphological variability. Am J Phys Anthropol, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

12.
    
Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.  相似文献   

13.
目的:改进骨折接骨扳内固定技术.观察新型迭形接骨板临床效果。方法:选择四肢长管骨骨折患者165例(上肢骨折26例,下肢骨折139例),均采用新型迭形接骨板施行骨折内固定手术。结果:手术后平均随访1年4个月(5年7个月~51天),除5例(占3%)出现并发症外,其余骨折均愈合良好,很少发现接骨板和螺钉断裂、折弯和松动情况。结论:与传统接骨板比较,新型迭形接骨板结构设计新颖,力学原理独特,临床效果满意,并发症少,较好地改进了四肢长管骨(尤其是下肢)骨折接骨板内固定技术,值得推荐。  相似文献   

14.
    
Skull and head muscles of Heptranchias perlo were studied. Its distinctive features include the suboccipital muscles, described for the first time, the absence of the palatoquadrate symphysis, a longitudinally extended mouth, and teeth unsuited for dissecting prey in typical method of modern sharks, which is cutting motions powered by head shaking from side to side. The palatoquadrate cartilages of H. perlo and closely related Hexanchidae articulate with the neurocranium via orbital and postorbital articulations, which together allow for lateral expansion of the jaws, but restrict retraction and protraction. We interpret these features as an adaptation to a different method of prey dissection, that is, ripping in a backward pull. It employs the specific postorbital articulation together with the suboccipital muscles as force-transmitting devices, and is powered by swimming muscles which produce a rearward thrust of the tail. During this type of dissection, the anterior part of the vertebral column should experience a tensile stress which explains the replacement of rigid vertebral bodies by a collagenous sheath around the notochord in H. perlo. The backward-ripping dissection could have been common among ancient Elasmobranchii based on the similarly developed postorbital articulation, a longitudinally extended mouth, and the absence of the palatoquadrate symphysis. A biomechanical comparison with the extinct Pucapampella indicates that ancient elasmobranchs could be also specialized in the backward-ripping prey dissection, but their mechanism was different from that inferred for H. perlo. We suggest that in the early evolution of sharks this mechanism was replaced by head-shaking dissection and then later was restored in H. perlo on a new morphological basis. A new position of the postorbital articulation below the vertebral axis is fraught with the braincase elevation when backward ripping the prey, and as a counter-mean, requires formation of suboccipital portions of the axial musculature unknown in other sharks. Homology and origin of these portions is considered.  相似文献   

15.
    
Evidence is accumulating that bone material stiffness increases during ontogeny, and the role of elastic modulus in conditioning attributes of strength and toughness is therefore a focus of ongoing investigation. Developmental changes in structural properties of the primate mandible have been documented, but comparatively little is known about changes in material heterogeneity and their impact on biomechanical behavior. We examine a cross‐sectional sample of Macaca fascicularis (N = 14) to investigate a series of hypotheses that collectively evaluate whether the patterning of material stiffness (elastic modulus) heterogeneity in the mandible differs among juvenile, subadult and adult individuals. Because differences in age‐related activity patterns are known to influence bone stiffness and strength, these data are potentially useful for understanding the relationship between feeding behavior on the one hand and material and structural properties of the mandible on the other. Elastic modulus is shown to be spatially dependent regardless of age, with this dependence being explicable primarily by differences in alveolar versus basal cortical bone. Elastic modulus does not differ consistently between buccal and lingual cortical plates, despite likely differences in the biomechanical milieu of these regions. Since we found only weak support for the hypothesis that the spatial patterning of heterogeneity becomes more predictable with age, accumulated load history may not account for regional differences in bone material properties in mature individuals with respect to the mandibular corpus. Am J Phys Anthropol 153:297–304, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
版纳小型猪近交系椎骨、肋骨的形态及生物力学研究   总被引:1,自引:0,他引:1  
本研究观察了版纳小型猪近交系椎骨、肋骨的解剖学、组织学形态,并对其腰椎进行轴向载荷压缩试验。小型猪椎骨及肋骨在解剖学、组织学方面与人近似,其腰椎能承受人类正常生理载荷。因此,版纳小型猪椎骨、肋骨可以作为异种骨移植的材料。  相似文献   

17.
    
Understanding of cancellous bone permeability is lacking despite its importance in designing tissue engineering scaffolds for bone regeneration and orthopaedic surgery that relies on infiltration of bone cement into porous cancellous bone. We employed micro-computational fluid dynamics to investigate permeability for 37 cancellous bone specimens, eliminating stringent technical requirements of bench-top testing. Microarchitectural parameters were also determined for the specimens and correlated, using uni-variate and multi-variate regression analyses, against permeability. We determined that bone surface density, trabecular pattern factor, structure model index and trabecular number are other possible predictors of permeability (with R values of 0.47, 0.44, 0.40 and 0.33), in addition to the commonly used porosity parameter (R value of 0.38). Pooling these parameters and performing multi-variate linear regression analysis improved yield the R-value of 0.50, indicating that porosity alone is a poor predictor of cancellous bone permeability and, therefore, other parameters should be included for a better and improved linear model.  相似文献   

18.
Background: There is lack of further observations on the microstructure and material property of callus during bone defect healing and the relationships between callus properties and the mechanical strength. Methods: Femur bone defect model was created in rabbits and harvested CT data to reconstruct finite element models at 1 and 2 months. Three types of assumed finite element models were compared to study the callus properties, which assumed the material elastic property as heterogeneous (R-model), homogenous (H-model) or did not change from 1 to 2 months (U-model). Results: The apparent elastic moduli increased at 2 months (from 355.58 ± 132.67 to 1139.30 ± 967.43 MPa) in R-models. But there was no significant difference in apparent elastic moduli between R-models (355.58 ± 132.67 and 1139.30 ± 967.43 MPa) and H-models (344.79 ± 138.73 and 1001.52 ± 692.12 MPa) in 1 and 2 months. A significant difference of apparent elastic moduli was found between the R-model (1139.30 ± 967.43 MPa) and U-model group (207.15 ± 64.60 MPa) in 2 months. Conclusions: This study showed that the callus structure stability remodeled overtime to achieve a more effective structure, while the material quality of callus tissue is a very important factor for callus strength. At the meantime, this study showed an evidence that the material heterogeneity maybe not as important as it is in bone fracture model.  相似文献   

19.
    
The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire asynchronously and reach peak activity during the power stroke. Compared to these strepsirrhines, however, the balancing-side posterior temporalis of anthropoids appears to have a relatively delayed firing pattern. Moreover, based on their smaller W/B ratios, anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis. This in turn suggests that anthropoids may emphasize the duration and magnitude of the power stroke during mastication. This hypothesis, however, requires additional testing. Furthermore, during the latter portion of the power stroke, the late activity of the balancing-side posterior temporalis of anthropoids apparently assists the balancing-side deep masseter in driving the working-side molars through the terminal portion of occlusion.  相似文献   

20.
Chan YL  Hadly EA 《Molecular ecology》2011,20(22):4592-4605
An understanding of how ecological traits influence past species response to environmental change can aid our future predictions of species persistence. We used ancient DNA and serial coalescent modelling in a hypothesis-testing framework to reveal differences in temporal genetic variation over 10,000 years for two species of subterranean rodents that currently differ in rarity (abundance, range size and habitat specificity) and mating system, but that reside in the same volcanically active region. Comparative phylochronologic analyses indicated little genetic change and suggest genetic stability in the solitary widespread Ctenomys haigi over thousands of years. In contrast, we found a pattern of haplotypic turnover in the rare and currently endangered Ctenomys sociabilis. Serial coalescent modelling indicated that the best-fit models of microevolutionary change included gene flow between isolated populations for this species. Although C. haigi and C. sociabilis are congeners that share many life history traits, they have behavioural, habitat-preference and population-size differences that may have resulted in contrasting patterns of temporal variation during periods of environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号