首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptor proteins mediate signal transduction from cell surface receptors to downstream signaling pathways. The Grb7 protein family of adaptor proteins is constituted by Grb7, Grb10, and Grb14. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7‐mediated cell migration has been shown to proceed through a focal adhesion kinase (FAK)/Grb7 pathway, although the specific participants downstream of Grb7 in cell migration signaling have not been fully determined. In this study, we report that Grb7 interacts with Hax‐1, a cytoskeletal‐associated protein found overexpressed in metastatic tumors and cancer cell lines. Additionally, in yeast 2‐hybrid assays, we show that the interaction is specific to the Grb7‐RA and ‐PH domains. We have also demonstrated that full‐length Grb7 and Hax‐1 interact in mammalian cells and that Grb7 is tyrosine phosphorylated. Isothermal titration calorimetry measurements demonstrate the Grb7‐RA‐PH domains bind to the Grb7‐SH2 domain with micromolar affinity, suggesting full‐length Grb7 can exist in a head‐to‐tail conformational state that could serve a self‐regulatory function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Grb7 is an adaptor molecule mediating signal transduction from multiple cell surface receptors to diverse downstream pathways. Grb7, along with Grb10 and Grb14, make up the Grb7 protein family. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7 and a receptor tyrosine kinase, ErbB2, are overexpressed in 20–30% of breast cancers. Grb7 overexpression has been linked to enhanced cell migration and metastasis, although the participants in these pathways have not been fully determined. In this study, we report the Grb7 protein interacts with Filamin‐a, an actin‐crosslinking component of the cell cytoskeleton. Additionally, we have demonstrated the interaction between Grb7 and Flna is specific to the RA‐PH domains of Grb7, and the immunoglobulin‐like repeat 16–19 domains of Flna. We demonstrate that full‐length Grb7 and Flna interact in the mammalian cellular environment, as well as in vitro. Immunofluorescent microscopy shows potential co‐localization of Grb7 and Flna in membrane ruffles upon epidermal growth factor stimulation. These studies are amongst the first to establish a clear connection between Grb7 signaling and cytoskeletal remodeling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Cell migration is a fundamental cellular process requiring integrated activities of the cytoskeleton, membrane, and cell/extracellular matrix adhesions. Many cytoskeletal activities rely on microtubule filaments. It has been speculated that microtubules can serve as tracks to deliver proteins essential for focal adhesion turnover. Three microtubule end-binding proteins (EB1, EB2, and EB3) in mammalian cells can track the plus ends of growing microtubules. EB1 and EB3 together can regulate microtubule dynamics by promoting microtubule growth and suppressing catastrophe, whereas, in contrast, EB2 does not play a direct role in microtubule dynamic instability, and little is known about the cellular function of EB2. By quantitative proteomics, we identified mammalian HCLS1-associated protein X-1 (HAX1) as an EB2-specific interacting protein. Knockdown of HAX1 and EB2 in skin epidermal cells stabilizes focal adhesions and impairs epidermal migration in vitro and in vivo. Our results further demonstrate that cell motility and focal adhesion turnover require interaction between Hax1 and EB2. Together, our findings provide new insights for this critical cellular process, suggesting that EB2 association with Hax1 plays a significant role in focal adhesion turnover and epidermal migration.  相似文献   

4.
Cardiomyocyte apoptosis is a major process in pathogenesis of a number of heart diseases, including ischemic heart diseases and cardiac failure. Ensuring survival of cardiac cells by blocking apoptotic events is an important strategy to improve cardiac function. Although the role of ER disruption in inducing apoptosis has been demonstrated, we do not yet fully understand how it influences the mitochondrial apoptotic machinery in cardiac cell models. Recent investigations have provided evidences that the prosurvival protein HCLS1-associated protein X-1 (Hax1) protein is intimately associated with the pathogenesis of heart disease, mitochondrial biology, and protection from apoptotic cell death. To study the role of Hax1 upon ER stress induction, Hax1 was overexpressed in cardiac cells subjected to ER stress, and cell death parameters as well as mitochondrial alterations were examined. Our results demonstrated that the Hax1 is significantly downregulated in cardiac cells upon ER stress induction. Moreover, overexpression of Hax1 protected from apoptotic events triggered by Tunicamycin-induced ER stress. Upon treatment with Tunicamycin, Hax1 protected from mitochondrial fission, downregulation of mitofusins 1 and 2 (MFN1 and MFN2), loss of mitochondrial membrane potential (?Ψm), production of reactive oxygen species (ROS) and apoptotic cell death. Taken together, our results suggest that Hax1 inhibits ER stress-induced apoptosis at both the pre- and post-mitochondrial levels. These findings may offer an opportunity to develop new agents that inhibit cell death in the diseased heart.  相似文献   

5.
为评价抗caspase 3核酶在阻抑细胞凋亡发生中的潜在价值 ,以RNaseP催化亚基M1RNA为模板 ,设计合成 3个特异性针对人caspase 3的核酶pM1 GS716、pM1 GS337和pM1 GS2 35 ,并对它们的体内外切割活性进行探讨 .3 2 P标记的caspase 3基因片段体外转录物作为靶RNA ,体外切割实验表明 ,pM1 GS716和pM1 GS337均有切割活性 ,其中pM1 GS716的切割效率可达到 93% .3个核酶转染HeLa细胞 ,评价其在体内的切割活性 .在TNF α作用下 ,转染pM1 GS716的HeLa细胞内caspase 3mRNA下降了 75 % ,蛋白含量下降了 6 9% ,caspase 3蛋白酶活性下降了 5 2 % .Hoechst 332 5 8染色表明 ,细胞凋亡率较对照明显下降 (分别为 2 1 6± 0 7%和 4 9 4± 0 2 % ,P <0 0 1) .提示体外制备的pM1 GS716具有良好的特异催化切割活性 ,有望通过切割caspase 3而抑制细胞凋亡 .  相似文献   

6.
Kostmann disease is an inherited severe congenital neutropenia syndrome associated with loss-of-function mutations in an adaptor protein HS1-associated protein X-1 (Hax1). How Hax1 regulates neutrophil function remains largely unknown. In this paper, we use ribonucleic acid interference to deplete Hax1 in the neutrophil-like cell line PLB-985 and identify Hax1 as a negative regulator of integrin-mediated adhesion and chemotaxis. Using microfluidics, we show that depletion of Hax1 impairs neutrophil uropod detachment and directed migration. Hax1-deficient cells also display increased integrin-mediated adhesion and reduced RhoA activity. Moreover, depletion of RhoA induces increased neutrophil adhesion and impaired migration, suggesting that Hax1 regulates neutrophil adhesion and chemotaxis through RhoA. Accordingly, activation of RhoA is sufficient to rescue adhesion of Hax1-deficient neutrophils. Together, our findings identify Hax1 as a novel regulator of neutrophil uropod detachment and chemotaxis through RhoA.  相似文献   

7.
Src‐homology (SH2) domains are an attractive target for the inhibition of specific signalling pathways but pose the challenge of developing a truly specific inhibitor. The G7‐18NATE cyclic peptide is reported to specifically inhibit the growth factor receptor bound protein 7 (Grb7) adapter protein, implicated in the progression of several cancer types, via interactions with its SH2 domain. G7‐18NATE effectively inhibits the interaction of Grb7 with ErbB3 and focal adhesion kinase in cell lysates and, with the addition of a cell permeability sequence, inhibits the growth and migration of a number of breast cancer cell lines. It is thus a promising lead in the development of therapeutics targeted to Grb7. Here we investigate the degree to which G7‐18NATE is specific for the Grb7‐SH2 domain compared with closely related SH2 domains including those of Grb10, Grb14, and Grb2 using surface plasmon resonance. We demonstrate that G7‐18NATE binds with micromolar binding affinity to Grb7‐SH2 domain (KD = 4–6 μm ) compared with 50–200 times lower affinity for Grb10, Grb14, and Grb2 but that this specificity depends critically on the presence of phosphate in millimolar concentrations. Other differences in buffer composition, including use of Tris or 2‐(N‐Morpholino)ethanesulfonic acid or varying the pH, do not impact on the interaction. This suggests that under cellular conditions, G7‐18NATE binds with highest affinity to Grb7. In addition, our findings demonstrate that the basis of specificity of G7‐18NATE binding to the Grb7‐SH2 domain is via other than intrinsic structural features of the protein, representing an unexpected mode of molecular recognition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways.  相似文献   

9.
The growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is often coamplified with the erythroblastosis oncogene B 2 receptor in 20% to 30% of breast cancer patients. Grb7 overexpression has been linked to increased cell migration and cancer metastasis. The ras associating and pleckstrin homology domain region of Grb7 has been reported to interact with various other downstream signaling proteins such as four and half Lin11, Isl‐1, Mec‐3 (LIM) domains isoform 2 and filamin α. These interactions are believed to play a role in regulating Grb7‐mediated cell migration function. The full‐length Grb7 protein has been shown to dimerize, and the oligomeric state of the Grb7SH2 domain has been extensively studied; however, the oligomerization state of the ras associating and pleckstrin homology domains, and the importance of this oligomerization in Grb7 function, is yet to be fully known. In this study, we characterize the oligomeric state of the Grb7RA domain using size exclusion chromatography, nuclear magnetic resonance, nuclear relaxation studies, glutaraldehyde cross linking, and dynamic light scattering. We report the Grb7RA domain can exist in transient multimeric forms and, based upon modeling results, postulate the potential role of Grb7RA domain oligomerization in Grb7 function.  相似文献   

10.
11.
It is well known the dimerization state of receptor tyrosine kinases (RTKs), in conjunction with binding partners such as the growth factor receptor bound protein 7 (Grb7) protein, plays an important role in cell signaling regulation. Previously, we proposed, downstream of RTKs, that the phosphorylation state of Grb7SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs. In this manner, additional dimerization‐dependent regulation could occur downstream of the membrane‐bound kinase in RTK‐mediated signaling pathways. Extrapolation to the full‐length (FL) Grb7 protein, and the ability to test this hypothesis further, has been hampered by the availability of large quantities of pure and stable FL protein. Here, we report the biophysical characterization of the FL Grb7 protein and also a mutant representing a tyrosine‐phosphorylated Grb7 protein form. Through size exclusion chromatography and analytical ultracentrifugation, we show the phosphorylated‐tyrosine‐mimic Y492E‐FL‐Grb7 protein (Y492E‐FL‐Grb7) is essentially monomeric at expected physiological concentrations. It has been shown previously the wild‐type FL Grb7(WT‐FLGrb7) protein is dimeric with a dissociation constant (Kd) of approximately 11μM. Our studies here measure a FL protein dimerization Kd of WT‐FL‐Grb7 within one order of magnitude at approximately 1μM. The approximate size and shape of the WT‐FL‐Grb7 in comparison the tyrosine‐phosphorylation mimic Y492E‐FL‐Grb7 protein was determined by dynamic light scattering methods. In vitro phosphorylation of the Grb7SH2 domain indicates only one of the available tyrosine residues is phosphorylated, suggesting the same phosphorylation pattern could be relevant in the FL protein. The biophysical characterization studies in total are interpreted with a view towards understanding the functionally active Grb7 protein conformation.  相似文献   

12.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.  相似文献   

14.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

15.
Three‐dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose‐derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I, fibronectin and laminin), and exhibited stronger anti‐apoptotic and anti‐oxidative capacities than two‐dimensional (2D) cultured cells. Furthermore, 3D culture increased the paracrine secretion of cytokines by MSCs, including angiogenic factors (VEGF and basic fibroblast growth factor), anti‐apoptotic factors (epidermal growth factor and hepatocyte growth factor), the anti‐oxidative factor insulin‐like growth factor and the anti‐inflammatory protein tumour necrosis factor‐alpha stimulated gene/protein 6. Consistent with in vitro experiments, 3D spheroids of MSCs showed enhanced survival and paracrine effects in vivo. More importantly, when injected into the kidney of model rats with ischemia‐reperfusion (I/R)‐induced AKI, 3D spheroids were more beneficial in protecting the I/R kidney against apoptosis, reducing tissue damage, promoting vascularization and ameliorating renal function compared with 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs, and might be promising for AKI treatment.  相似文献   

16.
Summary Examination of estrogen-responsive processes in cell culture is used to investigate hormonal influence on cancer cell growth and gene expression. Most experimental studies have used breast cancer cell lines, in particular MCF7 cells, to investigate estrogen responsiveness. In this study we examined an ovarian cancer cell line, BG-1, which is highly estrogen-responsive in vitro. This observation, plus the fact that the cells are of ovarian rather than mammary gland origin, makes it an attractive alternative model. 17β-Estradiol, epidermal growth factor, and insulin-like growth factor induced proliferation of BG-1 and MCF7 cells. Viability was dependent on these growth factors in BG-1 cells, but not in MCF7 cells. Therefore, we examined the differences between these two cell lines with respect to estrogen and growth factor receptors. BG-1 cells have twice as many estrogen receptors as MCF7 cells, and BG-1 cells have higher insulin-like growth factor-1 and epidermal growth factor receptor levels than MCF7 cells. This may also explain why BG-1 cells proliferate 56% more robustly in serum and show more serum dependence in culture. In both BG-1 and MCF7 cells, epidermal growth factor receptor number is low (<20 000/cell), while insulin-like growth factor-1 receptor level was highest in estrogen receptor positive cell lines. For example, insulin-like growth factor-1 receptor was higher in BG-1 and MCF7 cells than in estrogen receptor negative cells (HeLa>MDA-MB-435>HBL100). In conclusion, BG-1 cells are an excellent model for understanding hormone responsiveness in ovarian tissue and an alternative for examining estrogen receptor-mediated and insulin-like growth factor-1/epidermal growth factor/estrogen cross-talk processes because of their sensitivity to these factors.  相似文献   

17.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

18.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20-30% of breast cancers. In general, growth factor receptor bound (Grb) proteins bind to activated membrane-bound receptor tyrosine kinases (RTKs; e.g., the epidermal growth factor receptor, EGFR) through their Src homology 2 (SH2) domains. In particular, Grb7 binds to erbB2 (a.k.a. EGFR2) and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In previous studies, we reported the solution structure and the backbone relaxation behavior of the Grb7-SH2/erbB2 peptide complex. In this study, isothermal titration calorimetry studies have been completed by measuring the thermodynamic binding parameters of several phosphorylated and non-phosphorylated peptides representative of natural Grb7 receptor ligands as well as ligands developed through combinatorial peptide screening methods. The entirety of these calorimetric studies is interpreted in an effort to describe the specific ligand binding characteristics of the Grb7 protein.  相似文献   

19.
The mechanism(s) by which HIV-1 infection contributes to depletion of CD4(+) T cell is not well understood. In this report, we investigated whether a recently identified isoform of growth factor receptor bound protein (Grb2), named Grb3-3, a signaling molecule that is associated with the MAP kinase pathway and with apoptosis could be involved. We find that Grb3-3 is markedly up-regulated following HIV-1 infection of CD4(+) peripheral blood mononuclear cells undergoing apoptosis. Although IL-2 deprived CD4(+) cells also undergo apoptosis to a similar extent, Grb3-3 upregulation is not detected under these experimental conditions. Transient overexpression of Grb3-3 in Jurkat T-cells also causes apoptosis. Upon staurosporine stimulation, Grb3-3 predisposes Sup-T1 cell to apoptosis. Finally, analysis of the HIV-1 genes responsible for Grb3-3 expression demonstrates that Tat and Nef can independently induces its expression, suggesting these two earliest viral gene products of HIV-1 may share some common pathway(s) in up-regulating Grb3-3 expression.  相似文献   

20.
In general, epidermal growth factor receptor family members stimulate cell proliferation. In contrast, at least one HER4 isoform, JM-a/Cyt1, inhibits cell growth after undergoing a two-step proteolytic cleavage that first produces a membrane-anchored 80-kDa fragment (m80HER4) and subsequently liberates a soluble 80-kDa fragment, s80HER4. Here we report that s80HER4 Cyt1 action increased the expression of WWP1 (for WW domain-containing protein 1), an E3 ubiquitin ligase, but not other members of the Nedd4 E3 ligase family. The HER4 Cyt1 isoform contains three proline-rich tyrosine (PY) WW binding motifs, while Cyt2 has only two. WWP1 binds to all three Cyt1 PY motifs; the interaction with PY2 found exclusively in Cyt1 was strongest. WWP1 ubiquitinated and caused the degradation of HER4 but not of EGFR, HER2, or HER3. The HER4-WWP1 interaction also accelerated WWP1 degradation. Membrane HER4 (full length and m80HER4, the product of the first proteolytic cleavage) were the preferred targets of WWP1, correlating with the membrane localization of WWP1. Conversely s80HER4, a poorer WWP1 substrate, was found in the cell nucleus, while WWP1 was not. Deletion of the C2 membrane association domain of WWP1 allowed more efficient s80HER4 degradation, suggesting that WWP1 is normally part of a membrane complex that regulates HER4 membrane species levels, with a predilection for the growth-inhibitory Cyt1 isoform. Finally, WWP1 expression diminished HER4 biologic activity in MCF-7 cells. We previously showed that nuclear s80HER4 is ubiquitinated and degraded by the anaphase-promoting complex, suggesting that HER4 ubiquitination within specific cellular compartments helps regulate the unique HER4 signaling capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号