首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Among tetrapods, evidence for postrenal modification of the urine by the distal digestive tract (including the colon and cloaca) is highly variable. Birds and bladderless reptiles are of interest because the colon and cloaca represent the only sites from which water and ions can be reclaimed from the urine secreted by the kidney. For animals occupying desiccating environments (e.g., deserts and marine environments), postrenal modification of the urine may directly contribute to the maintenance of hypo‐osmotic body fluids. We compared the morphology and distribution of key proteins in the colon, cloaca, and urogenital ducts of watersnakes from marine (Nerodia clarkii clarkii) and freshwater (Nerodia fasciata) habitats. Specifically, we examined the epithelia of each tissue for evidence of mucus production by examining the distribution of mucopolysaccharides, and for evidence of water/ion regulation by examining the distribution of Na+/K+‐ATPase (NKA), Na+/K+/Cl? cotransporter (NKCC), and aquaporin 3 (AQP3). NKCC localized to the basolateral epithelium of the colon, urodeal sphincter, and proctodeum, consistent with a role in secretion of Na+, Cl?, and K+ from the tissue, but NKA was not detected in the colon or any compartment of the cloaca. Interestingly, NKA was detected in the basolateral epithelium of the ureters, suggesting the urothelium may play a role in active ion transport. AQP3 was detected in the ureters and coprodeal complex, consistent with a role in urinary and fecal dehydration or, potentially, in the production of the watery component of the mucus secreted by the coprodeal complex. Since no differences in general cloacal morphology, production of mucus, or the distribution of ion transporters/water channels were detected between the two species, cloacal osmoregulation may either be regulated by proteins not examined in this study or may not be responsible for the differential success of N. c. clarkii and N. fasciata in marine habitats. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
    
Ion environment and ionic fluxes through membrane are thought to be important in the spermatozoa's maturation, capacitation, and the initiating process of gamete interaction. In this work, the membrane proteins isolated from human sperm plasma membrane were reconstituted into planar lipid bilayers via fusion, and the ion channels activities were observed under voltage clamp mode. In cis 200 // trans 100 mM KCl solution, a TEA-sensitive cation-selective channel with a unit conductance of 40 pS was recorded. In a gradient of 200//100 mM NaCl solutions, a Na+-selective channel with a unit conductance of 26 pS was recorded. In both cases, reversal potential was about −18 mV, which is close to the predicated value of a perfect Nernst K+ or Na+ electrode. In 50//10 mM CaCl2 solution, a cation channel activity with a unit conductance of 40 pS and reversal potential of about −20 mV was usually observed. In 200//100 mM NMDG(N-methyl-D-glucamine)-Cl solution, where the cation ions were substituted with NMDG, a 30-pS anion-selective channel activity was also detected. The variety in the types of ion channels observed in human spermatozoa plasma membrane suggests that ion channels may play a range of different roles in sperm physiology and gamete interaction. Mol. Reprod. Dev. 50:354–360, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Intracellular activities of K+, H+, Mg2+, Ca2+, and Cl?, measured with ion selective microelectrodes in the oocyte and the nurse cells in ovarian follicles of Hyalophora cecropia, indicated that a Ca2+ current is a key component of the electrical potential that is maintained across the intercellular bridges connecting these two cells. In vitellogenic follicles, Ca2+ activity averaged 650 nM in the oocyte and 190 nM in the nurse cells, whereas activities of the other ions studied differed between these cells by no more than 6%. Incubation in 200 μM ammonium vanadate caused a reversal of electrical potential from 8.3 mV, nurse cell negative, to 3.0 mV, oocyte negative, and at the same time the Ca2+ gradient was reversed: activities rose to an average 3.0 μM in the nurse cells and 1.6 μM in the oocyte, whereas transbridge ratios of the other cations remained at 0–3%. In immature follicles that had not yet initiated their transbridge potentials, Ca2+ activities averaged ~? 2 μM in both oocyte and nurse cells. The results suggest that vitellogenic follicles possess a vanadatesensitive Ca2+ extrusion mechanism that is more powerful in the nurse cells than in the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

4.
盐胁迫下囊果碱蓬出苗状况及苗期抗盐性   总被引:3,自引:0,他引:3       下载免费PDF全文
高奔  宋杰  刘金萍  史功伟  范海  赵可夫  王宝山 《生态学报》2009,29(11):6131-6135
研究了盐胁迫对囊果碱蓬出苗、幼苗生长、离子积累以及光合放氧速率的影响.囊果碱蓬生长的最适盐浓度在200 mmol/L NaCl左右.高浓度NaCl(400 mmol/L和600 mmol/L)没有显著降低其出苗率,200 mmol/L NaCl对出苗率具有促进作用.400 mmol/L和600 mmol/L NaCl显著降低了光合放氧速率.囊果碱蓬在高浓度NaCl处理下能够维持叶片较高的K+/Na+ 及含水量可能是其适应高盐生境的重要机制.  相似文献   

5.
氯化钾对长春花盛花期盐胁迫效应和生物碱含量的影响   总被引:1,自引:0,他引:1  
在温室土培条件下,研究了不同浓度KCl处理对长春花盛花期盐胁迫效应以及对文多灵、长春质碱、长春碱和长春新碱等生物碱含量的影响.结果现实:(1)3‰ NaCl胁迫下,施入一定量KCl,将Na+/K+调为20:1(K2)时可显著缓解盐胁迫对长春花的危害,与不施KCl(K1)相比,长春花的鲜质量、株高、根长和相对含水量均显著提高,而长春花叶片丙二醛含量显著下降,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性在Na+/K+为20:1(K2)时显著高于其它处理,但当Na+/K+为10:1(K3)与5:1(K4)时,盐胁迫的危害又显著加剧.(2)Na+/K+为20:1处理的长春花盛花期文多灵、长春质碱、长春碱和长春新碱含量显著高于其它处理,分别为20.88、30.18、2.53和5.12 mg·g-1.研究表明,Na+/K+为20:1比例施用钾肥可最大限度地降低NaCl胁迫对盛花期长春花生长造成的伤害,并显著促进其生物碱的代谢,显著提高长春花盛花期4种主要生物碱的含量.  相似文献   

6.
    
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

7.
    
The K+‐Cl? cotransporters (KCCs) belong to the cation‐Cl? cotransporter family and consist of four isoforms and many splice variants. Their main role is to promote electroneutral efflux of K+ and Cl? ions across the surface of many cell types and, thereby, to regulate intracellular ion concentration, cell volume, and epithelial salt movement. These transport systems are induced by an increase in cell volume and are less active at lower intracellular [Cl?] (Cli), but the mechanisms at play are still ill‐defined. In this work, we have exploited the Xenopus laevis expression system to study the role of lysine‐deficient protein kinases (WNKs), protein phosphatases 1 (PP1s), and SPS1‐related proline/alanine‐rich kinase (SPAK) in KCC4 regulation during cell swelling. We have found that WNK4 and PP1 regulate KCC4 activity as part of a common signaling module, but that they do not exert their effects through SPAK or carrier dephosphorylation. We have also found that the phosphatases at play include PP1α and PP1γ1, but that WNK4 acts directly on the PP1s instead of the opposite. Unexpectedly, however, both cell swelling and a T926A substitution in the C‐terminus of full‐length KCC4 led to higher levels of heterologous K+‐Cl? cotransport and overall carrier phosphorylation. These results imply that the response to cell swelling must also involve allosteric‐sensitive kinase‐dependent phosphoacceptor sites in KCC4. They are thus partially inconsistent with previous models of KCC regulation.  相似文献   

8.
The CLC ‘Cl channel'' family consists of both Cl/H+ antiporters and Cl channels. Although CLC channels can undergo large, conformational changes involving cooperativity between the two protein subunits, it has been hypothesized that conformational changes in the antiporters may be limited to small movements localized near the Cl permeation pathway. However, to date few studies have directly addressed this issue, and therefore little is known about the molecular movements that underlie CLC-mediated antiport. The crystal structure of the Escherichia coli antiporter ClC-ec1 provides an invaluable molecular framework, but this static picture alone cannot depict the protein movements that must occur during ion transport. In this study we use fluorine nuclear magnetic resonance (NMR) to monitor substrate-induced conformational changes in ClC-ec1. Using mutational analysis, we show that substrate-dependent 19F spectral changes reflect functionally relevant protein movement occurring at the ClC-ec1 dimer interface. Our results show that conformational change in CLC antiporters is not restricted to the Cl permeation pathway and show the usefulness of 19F NMR for studying conformational changes in membrane proteins of known structure.  相似文献   

9.
    
The localization of Na(+) , K(+) -ATPase (NKA) and the ultrastructural features of kidney were examined in larvae of the Persian sturgeon Acipenser persicus (L 31-41 mm total length and 182·3-417·3 mg). Investigations were conducted through light and electron microscopy and through immunofluorescence for NKA detection. The kidney nephrons consisted of a large glomerulus and tubules (neck, proximal, distal and collecting), which connected to the ureters. Posteriorly, ureters extended and joined together into a thin-walled ureter terminal sac. Ultrastructurally, the glomerular cells (podocytes) possessed distinctive pedicels that extended to the basal membrane. The proximal tubule (PT) showed two different cells. The cells lining the anterior part of PT possessed apical tall microvilli (c. 2·7 μm), a sub-apical tubular system, a basal nucleus and dense granules. Posteriorly in the cells, the sub-apical tubular system and granules were absent and round mitochondria associated with basolateral infoldings were found; the apical microvilli were reduced. Distal and collecting tubular cells showed the typical features of osmoregulatory cells, i.e. well-developed basolateral infoldings associated with numerous mitochondria. No immunofluorescence of NKA was detected in the glomeruli. A weak immunostaining was observed at the basolateral side of the cells lining the neck and PT. A strong immunostaining of NKA was observed in the entire cells of the distal tubules, collecting tubules and in some isolated cells of the ureters. In all immunostained cells, the basolateral region showed a much higher fluorescence and nuclei were immunonegative. In conclusion, the epithelial cells of kidney tubules had morphological and enzymatic features of ionocytes, particularly in the distal and collecting tubules. Thus, the kidney of A. persicus larvae possesses active ion exchange capabilities and, beside its implication in excretion, participates in osmoregulation.  相似文献   

10.
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). An important early component of the edema associated with TBI is astrocyte swelling (cytotoxic edema). Mechanisms for such swelling, however, are poorly understood. Ion channels/transporters/exchangers play a major role in cell volume regulation, and a disturbance in one or more of these systems may result in cell swelling. To examine potential mechanisms in TBI-mediated brain edema, we employed a fluid percussion model of in vitro barotrauma and examined the role of the ion transporter Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) in trauma-induced astrocyte swelling as this transporter has been strongly implicated in the mechanism of cell swelling in various neurological conditions. Cultures exposed to trauma (3, 4, 5 atm pressure) caused a significant increase in NKCC1 activity (21%, 42%, 110%, respectively) at 3 h. At 5 atm pressure, trauma significantly increased NKCC1 activity at 1 h and it remained increased for up to 3 h. Trauma also increased the phosphorylation (activation) of NKCC1 at 1 and 3 h. Inhibition of MAPKs and oxidative/nitrosative stress diminished the trauma-induced NKCC1 phosphorylation as well as its activity. Bumetanide, an inhibitor of NKCC1, significantly reduced the trauma-induced astrocyte swelling (61%). Silencing NKCC1 with siRNA led to a reduction in trauma-induced NKCC1 activity as well as in cell swelling. These findings demonstrate the critical involvement of NKCC1 in the astrocyte swelling following in vitro trauma, and suggest that blocking NKCC1 activity may represent a useful therapeutic strategy for the cytotoxic brain edema associated with the early phase of TBI.  相似文献   

11.
12.
    
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that extracellular Pi induces signal transduction in the target cells of FGF23 also and influences its signaling, utilizing a human embryonic kidney cell line HEK293. HEK293 cells expressed low levels of klotho, and treatment with a recombinant FGF23[R179Q], a proteolysis‐resistant mutant of FGF23, resulted in phosphorylation of ERK1/2 and induction of early growth response‐1 (EGR1) expression. Interestingly, increased extracellular Pi resulted in activation of the Raf/MEK/ERK pathway and expression of EGR1, which involved type III sodium/phosphate (Na+/Pi) cotransporter PiT‐1. Since the effects of an inhibitor of Na+/Pi cotransporter on FGF23 signaling suggested that the signaling triggered by increased extracellular Pi shares the same downstream cascade as FGF23 signaling, we further investigated their convergence point. Increasing the extracellular Pi concentration resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), as did treatment with FGF23. Knockdown of FGFR1 expression diminished the phosphorylation of both FRS2α and ERK1/2 induced by the Pi. Moreover, overexpression of FGFR1 rescued the decrease in Pi‐induced phosphorylation of ERK1/2 in the cells where the expression of PiT‐1 was knocked down. These results suggest that increased extracellular Pi triggers signal transduction via PiT‐1 and FGFR and influences FGF23 signaling in HEK293 cells. J. Cell. Biochem. 111: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
    
We have quantitatively measured gene expression for the sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2) in 23 human tissues using the method of real time PCR. As predicted, our results revealed that the expression of SGLT1 was very high in the small intestine (1.2E + 6 molecules/microg total RNA) relative to that in the kidney (3E + 4 molecules/microg total RNA). Surprisingly, we observed that the expression of SGLT1 in human heart was unexpectedly high (3.4E + 5 molecules/microg total RNA), approximately 10-fold higher than that observed in kidney tissue. DNA sequencing confirmed that the PCR amplified fragment was indeed the human SGLT1 gene. Moreover, in situ hybridization studies using a digoxigenin (DIG)-labeled antisense cRNA probe corresponding to human SGLT1 cDNA confirm that human cardiomyocytes express SGLT1 mRNA. In contrast, the expression of SGLT2 in human tissues appears to be ubiquitous, with levels ranging from 6.7E + 4 molecules/microg total RNA (in skeletal muscle) to 3.2E + 6 molecules/microg total RNA (in kidney), levels 10-100-fold higher than the expression of SGLT1 in the same tissues. Our finding that human cardiomyocytes express high levels of SGLT1 RNA suggests that SGLT1 may have a functional role in cardiac glucose transport. Since several SGLT inhibitors are currently in development as potential anti-diabetic agents, it may be important to assess the functional consequences of inhibition of SGLT1 in the heart.  相似文献   

14.
Early ionocytes have been studied in the European sea bass (Dicentrarchus labrax) embryos. Structural and functional aspects were analyzed and compared with those observed in the same conditions (38 ppt) in post hatching stages. Immunolocalization of Na+/K+‐ATPase (NKA) in embryos revealed the presence of ionocytes on the yolk sac membrane from a stage 12 pair of somites (S), and an original cluster around the first gill slits from stage 14S. Histological investigations suggested that from these cells, close to the future gill chambers, originate the ionocytes observed on gill arches and gill filaments after hatching. Triple immunocytochemical staining, including NKA, various Na+/K+/2Cl? cotransporters (NKCCs) and the chloride channel “cystic fibrosis transmembrane regulator” (CFTR), point to the occurrence of immature and mature ionocytes in early and late embryonic stages at different sites. These observations were completed with transmission electronic microscopy. The degree of functionality of ionocytes is discussed according to these results. Yolk sac membrane ionocytes and enteric ionocytes seem to have an early role in embryonic osmoregulation, whereas gill slits tegumentary ionocytes are presumed to be fully efficient after hatching.  相似文献   

15.
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+,K +-ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin–NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na +. Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K +, and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na +/K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.  相似文献   

16.
    
Phlorizin is a reversible inhibitor of the renal and small intestinal Na+/D-glucose cotransporter. In an attempt to purify the Na+/D-glucose cotransporter from a pig kidney brush border membrane fraction, we used an Affi-Gel affinity chromatography column to which 3-aminophlorizin had been coupled. A protein, composed according to crosslinking experiments of at least 3 subunits of molecular weight 60 kDa, was found to bind specifically to the phlorizin column. This protein was subsequently identified as catalase by sequence homology of three of its tryptic fragments to the sequence of several mammalian catalases as well as by its enzymatic activity. Although bovine liver catalase was bound tightly to the affinity matrix, phlorizin had no effect on the ability of the enzyme to degrade H2O2. In contrast, the Aspergillus niger and Neurospora crassa catalases did not bind to the phlorizin column. This difference may be related to the fact that mammalian catalases, but not the fungal catalases, contain an NADPH binding site with a yet unknown function. Interestingly, bovine liver catalase could be eluted with 50 microM NADPH from phlorizin columns. Irradiation in the presence of [3H]4-azidophlorizin allowed photolabeling of bovine liver catalase, which was prevented by the presence of 10 microM NADPH. After digestion of photolabeled catalase with chymotrypsin, a radioactive peptide was detected that was absent in catalase protected with NADPH. Docking simulations suggested that phlorizin can bind to the NADPH binding site with high affinity.  相似文献   

17.
    
Disruption of periciliary fluid homeostasis is the main pathogenesis of otitis media with effusion (OME), one of the most common childhood diseases. Although the underlying molecular mechanisms are unclear, it has been suggested that the altered functions of ion channels and transporters are involved in the fluid collection of middle ear cavity of OME patients. In the present study, we analyzed the effects of a major cytokine interleukin (IL)-1beta, which was known to be involved in the pathogenesis of OME, on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) in human middle ear cells. Intracellular pH (pH(i)) was measured in primary cultures of normal human middle ear epithelial (NHMEE) cells using a double perfusion chamber, which enabled us to analyze the membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to bumetanide-sensitive intracellular uptake of NH(4) (+). In NHMEE cells, NKCC activities were observed only in the basolateral membrane, and immunoblotting using specific antibodies revealed the expression of NKCC1. Interestingly, IL-1beta treatments augmented the basolateral NKCC activities and increased NKCC1 expression. In addition, IL-1beta treatments stimulated bumetanide-sensitive fluid transport across the NHMEE cell monolayers. Furthermore, an elevated NKCC1 expression was observed in middle ear cells from OME patients when compared to those from control individuals. The above results provide in vitro and in vivo evidence that the inflammatory cytokine IL-1beta upregulates NKCC1 in middle ear epithelial cells, which would be one of the important underlying mechanisms of excess fluid collection in OME patients.  相似文献   

18.
将多次继代培养的无花果试管苗接种在含 Na Cl不同浓度的 MS培养基上 ,30 0mmol·L- 1Na Cl使试管苗致死。在 0~ 2 0 0 mmol· L- 1Na Cl的培养基上 ,试管苗生长显著受到抑制 ,叶片中 Na+含量增加 ,K+/Na+上升。同时 ,游离脯氨酸和可溶性糖含量也增加 ,可以认为 Na+累积是无花果试管苗盐适应的主要方面 ,脯氨酸和可溶性糖增加也起到了增强耐盐性的功能  相似文献   

19.
A mutant of Synechocystis sp. strain PCC6803 was obtained by random cartridge mutagenesis, which could not grow at low sodium concentrations. Genetic analyses revealed that partial deletion of the sll0273 gene, encoding a putative Na + /H + exchanger, was responsible for this defect. Physiological characterization indicated that the sll0273 mutant exhibited an increased sensitivity towards K + , even at low concentrations, which was compensated for by enhanced concentrations of Na + . This enhanced Na + demand could also be met by Li + . Furthermore, addition of monensin, an ionophore mediating electroneutral Na + /H + exchange, supported growth of the mutant at unfavourable Na + /K + ratios. Measurement of internal Na + and K + contents of wild‐type and mutant cells revealed a decreased Na + /K + ratio in mutant cells pre‐incubated at a low external Na + /K + ratio, while it remained at the level of the wild type after pre‐incubation at a high external Na + /K + ratio. We conclude that the Sll0273 protein is required for Na + influx, especially at low external Na + concentrations or low Na + /K + ratios. This system may be part of a sodium cycle and may permit re‐entry of Na + into the cells, if nutrient/Na + symporters are not functional or operating.  相似文献   

20.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号