首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic structural determinants for export trafficking of G protein‐coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The α2B‐adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates α2B‐AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of α2B‐AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of β2‐AR, α1B‐AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.  相似文献   

2.
The influence of amino acid side chains [derived from: Ala, Val, Leu, Ile, Phe, Tyr(Bzl), Ser(Bzl), Thr(Bzl), Pro, Trp], incorporated into “aminoalkyl” part of PNA monomers, on the temperature-dependent distributions of rotamers about the tertiary amide bond was studied by means of 1H NMR at 0, 25 and 40°C in CDCl3. The ΔG0 values of the energy differences between individual rotamers were calculated. The results may be helpful in the designing of monomers with desirable properties.  相似文献   

3.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

4.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

5.

In bacterial reaction centers (RCs), photon-induced initial charge separation uses an A-side bacteriochlorophyll (BChl, BA) and bacteriopheophytin (BPh, HA), while the near-mirror image B-side BB and HB cofactors are inactive. Two new sets of Rhodobacter capsulatus RC mutants were designed, both bearing substitution of all amino acids for the native histidine M180 (M-polypeptide residue 180) ligand to the core Mg ion of BB. Residues are identified that largely result in retention of a BChl in the BB site (Asp, Ser, Pro, Gln, Asn, Gly, Cys, Lys, and Thr), ones that largely harbor the Mg-free BPh in the BB site (Leu and Ile), and ones for which isolated RCs are comprised of a substantial mixture of these two RC types (Ala, Glu, Val, Met and, in one set, Arg). No protein was isolated when M180 is Trp, Tyr, Phe, or (in one set) Arg. These findings are corroborated by ground state spectra, pigment extractions, ultrafast transient absorption studies, and the yields of B-side transmembrane charge separation. The changes in coordination chemistries did not reveal an RC with sufficiently precise poising of the redox properties of the BB-site cofactor to result in a high yield of B-side electron transfer to HB. Insights are gleaned into the amino acid properties that support BChl in the BB site and into the widely observed multi-exponential decay of the excited state of the primary electron donor. The results also have direct implications for tuning free energies of the charge-separated intermediates in RCs and mimetic systems.

  相似文献   

6.
The solution structure of a fragment of the human U1A spliceosomal protein containing residues 2 to 117 (U1A117) determined using multi-dimensional heteronuclear NMR is presented. The C-terminal region of the molecule is considerably more ordered in the free protein than thought previously and its conformation is different from that seen in the crystal structure of the complex with U1 RNA hairpin II. The residues between Asp90 and Lys98 form an α-helix that lies across the β-sheet, with residues Ile93, Ile94 and Met97 making contacts with Leu44, Phe56 and Ile58. This interaction prevents solvent exposure of hydrophobic residues on the surface of the β-sheet, thereby stabilising the protein. Upon RNA binding, helix C moves away from this position, changing its orientation by 135° to allow Tyr13, Phe56 and Gln54 to stack with bases of the RNA, and also allowing Leu44 to contact the RNA. The new position of helix C in the complex with RNA is stabilised by hydrophobic interactions from Ile93 and Ile94 to Ile58, Leu 41, Val62 and His10, as well as a hydrogen bond between Ser91 and Thr11. The movement of helix C mainly involves changes in the main-chain torsion angles of Thr89, Asp90 and Ser91, the helix thereby acting as a "lid" over the RNA binding surface.  相似文献   

7.
The A2A receptor is a class A/rhodopsin-like G protein-coupled receptor. Coupling to its cognate protein, Gs, occurs via restricted collision coupling and is contingent on the presence of cholesterol. Agonist activation slows diffusion of the A2A adenosine receptor in the lipid bilayer. We explored the contribution of the hydrophobic core and of the extended C terminus by examining diffusion of quantum dot-labeled receptor variants in dissociated hippocampal neurons. Single particle tracking of the A2A receptor(1–311), which lacks the last 101 residues, revealed that agonist-induced confinement was abolished and that the agonist-induced decrease in diffusivity was reduced substantially. A fragment comprising the SH3 domain and the guanylate kinase domain of synapse-associated protein 102 (SAP102) was identified as a candidate interactor that bound to the A2A receptor C terminus. Complex formation between the A2A receptor and SAP102 was verified by coimmunoprecipitation and by tracking its impact on receptor diffusion. An analysis of all trajectories by a hidden Markov model was consistent with two diffusion states where agonist activation reduced the transition between the two states and, thus, promoted the accumulation of the A2A receptor in the compartment with slow mobility. Overexpression of SAP102 precluded the access of the A2A receptor to a compartment with restricted mobility. In contrast, a mutated A2A receptor (with 383DVELL387 replaced by RVRAA) was insensitive to the action of SAP102. These observations show that the hydrophobic core per se does not fully account for the agonist-promoted change in mobility of the A2A receptor. The extended carboxyl terminus allows for regulatory input by scaffolding molecules such as SAP102.  相似文献   

8.
An α-mannosidase was purified from developing Ginkgo biloba seeds to apparently homogeneity. The molecular weight of the purified α-mannosidase was estimated to be 120 kDa by SDS–PAGE in the presence of 2-mercaptoethanol, and 340 kDa by gel filtration, indicating that Ginkgo α-mannosidase may function in oligomeric structures in the plant cell. The N-terminal amino acid sequence of the purified enzyme was Ala–Phe–Met–Lys–Tyr–X–Thr–Thr–Gly–Gly–Pro–Val–Ala–Gly–Lys–Ile–Asn–Val–His–Leu–. The α-mannosidase activity for Man5GlcNAc1 was enhanced by the addition of Co2+, but the addition of Zn2+, Ca2+, or EDTA did not show any significant effect. In the presence of cobalt ions, the hydrolysis rate for pyridylaminated Man6GlcNAc1 was significantly faster than that for pyridylaminated Man6GlcNAc2, suggesting the possibility that this enzyme is involved in the degradation of free N-glycans occurring in developing plant cells (Kimura, Y., and Matsuo, S., J. Biochem., 127, 1013–1019 (2000)). To our knowledge, this is the first report showing that plant cells contain an α-mannosidase, which is activated by Co2+ and prefers the oligomannose type free N-glycans bearing only one GlcNAc residue as substrate.  相似文献   

9.
We report the solid-phase synthesis and conformational analysis of a 14-membered, cyclic enkephalin analog, H? Tyr? c[? D ? A2bu? Gly? Phe? D ? Leu? ] (where A2bu represents α,γ-diaminobutyric acid). The results from the guinea pig ileum (GPI) and mouse vas deferens (MVD) assays show that the analog, though active, has little selectivity for the μ or δ opioid receptors. Conformational analysis is carried out using 1H-nmr and computer simulations, including molecular dynamics and energy minimizations. The results obtained here are compared with the findings of our studies carried out on the μ-receptor-selective diastereomer, H? Tyr? c[? D ? A2bu? Gly? Phe? Leu? ] [N. Mammi, M. Hassan, and M. Goodman (1985) J. Am. Chem. Soc. 107 , 4008–4013]. This comparison allows for insight into the regiospecificity of these cyclic enkephalin analogs.  相似文献   

10.
The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins GA88 and GB88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both GA88 and GB88. We show that, contrary to expectation, GB88, characterized by a native α+β fold, displays in the denatured state a content of native-like helical structure greater than GA88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.  相似文献   

11.
The polymerase chain reaction was used to produce seven variants of Thermus thermophilus elongation factor G (EF-G) with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile, and Tyr568Lys, localized in the β-sheet of domain IV, and mutation Gly553Asp, residing in the loop between domains III and IV. It was demonstrated that only the Lys496Ile mutation, located close to the beginning of loop 501–504, influenced the efficiency of translocation in the presence of mutant EF-G. Functional analysis of all the known mutations of domain IV showed that only mutations in loops 501–504 and 573–578, localized to the tip of domain IV, had a pronounced effect on the translocation activity of EF-G. Upon the interaction of EF-G with ribosomes, these loops are the closest to the decoding center, formed in the structure of the 16S RNA in the 30S subunit. The role of EF-G and its domain IV in ribosomal translocation is discussed.  相似文献   

12.
A previous differential geometric analysis of the conformational properties of the various amino acids has been extended to study their influence on folding over a larger backbone interval. In addition, statistical effects associated with variation in the number of the individual amino acids in the database have been treated in greater detail, using a simulation method. It is found that the amino acids can be divided into three groups on the basis of their conformational influence over four-Cα units in the interval i ? 6 ? j ? i + 6. Group Ia is composed of seven amino acids (His, Leu, Ala, Met, Lys, Gln, Ile) that encourage the formation of AR-helical structure. Group Ib (Glu, Phe, Trp, Val, Asp) is composed of amino acids with some helix-forming tendency but that also show positive extended-strand formation tendency. They therefore act as a bridge between group Ia and group II (Cys, Gly, Asn, Pro, Arg, Ser, Thr, Tyr) that contains amino acids that encourage the formation of extended structure and bends. The detailed four-Cα conformational properties of each of the amino acids are shown, and the ability of amino acids to exert conformational influence in both directions along the backbone is examined. It is shown that, in general, such influence extends farther in the N-terminal direction than in the C-terminal direction. A framework is briefly sketched for using the present data to investigate actual folding mechanisms.  相似文献   

13.
Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.  相似文献   

14.
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections. Here we analyzed the functional properties of six reported non-synonymous single nucleotide polymorphisms of MYD88 in an in vitro cellular system. Two variants found in the MyD88 death domain, S34Y and R98C, showed severely reduced NF-κB activation due to reduced homo-oligomerization and IRAK4 interaction. Structural modeling highlights Ser-34 and Arg-98 as residues important for the assembly of the Myddosome, a death domain (DD) post-receptor complex involving the DD of MyD88, IRAK4, and IRAK2 or IRAK1. Using S34Y and R98C as functional probes, our data show that MyD88 homo-oligomerization and IRAK4 interaction is modulated by the MyD88 TIR and IRAK4 kinase domain, demonstrating the functional importance of non-DD regions not observed in a recent Myddosome crystal structure. The differential interference of S34Y and R98C with some (IL-1 receptor, TLR2, TLR4, TLR5, and TLR7) but not all (TLR9) MyD88-dependent signaling pathways also suggests that receptor specificities exist at the level of the Myddosome. Given their detrimental effect on signaling, it is not surprising that our epidemiological analysis in several case-control studies confirms that S34Y and R98C are rare variants that may drastically contribute to susceptibility to infection in only few individuals.  相似文献   

15.
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.Key words: mice oocytes, PDE3A, cAMP, PKA, polo-like kinase 1, centrosome, prophase arrested  相似文献   

16.
We previously proposed the hydrophobic and bulky residues of the three loops, designated stereochemistry gate loops (SGLs), to constitute a hydrophobic substrate binding pocket of -hydantoinase from Bacillus stearothermophilus SD1. Simulation of substrate binding in the active site of -hydantoinase and sequence alignment of various -hydantoinases revealed the critical hydrophobic residues closely located around the exocyclic substituent of substrate. To evaluate the roles of these residues in substrate binding pocket, site-directed mutagenesis was performed specifically for Leu 65, Tyr 155, and Phe 159. When Tyr 155 was mutated to Phe and Glu, both mutants Y155F and Y155E were totally inactive for nonsubstituted hydantoin and -5-hydroxyphenyl hydantoin (HPH), which indicates that Tyr 155 is involved in substrate binding via a hydrogen bond with the hydantoinic ring. Furthermore, replacement of the hydrophobic residues Leu 65 and Phe 159 with Glu, a charged amino acid, resulted in a significant decrease in activity for nonsubstituted hydantoin, but not for HPH. The Kcat values of both mutants for nonsubstituted hydantoin also severely decreased, but a slight change in the Kcat values was observed towards HPH. These results suggest that the hydrophobic residues in SGLs play an essential role in substrate binding, and differentially interact according to the property of the exocyclic substituent.  相似文献   

17.
Hisashi Ishida 《Proteins》2014,82(9):1985-1999
Proteasome is involved in the degradation of proteins. Proteasome activators bind to the proteasome core particle (CP) and facilitate opening a gate of the CP, where Tyr8 and Asp9 in the N‐termini tails of the CP form the ordered open gate. In a double mutant (Tyr8Gly/Asp9Gly), the N‐termini tails are disordered and the stabilized open‐gate conformation cannot be formed. To understand the gating mechanism of the CP for the translocation of the substrate, four different molecular dynamics simulations were carried out: ordered‐ and Tyr8Gly/Asp9Gly disordered‐gate models of the CP complexed with an ATP‐independent PA26 and ordered‐ and disordered‐gate models of the CP complexed with an ATP‐dependent PAN‐like activator. The free‐energies of the translocation of a polypeptide substrate moving through the gate were estimated. In the ordered‐gate models, the substrate in the activator was more stable than that in the CP. The conformational entropy of the N‐termini tails of the CP was larger when the substrate was in the activator than in the CP. In the disordered‐gate models, the substrate in the activator was more destabilized than in the ordered‐gate models. The mutated N‐termini tails became randomized and their increased conformational entropy could no longer increase further even when the substrate was in the activator, meaning the randomized N‐termini tails had lost the ability to stabilize the substrate in the activator. Thus, it was concluded that the dynamics of the N‐termini tails entropically play a key role in the translocation of the substrate. Proteins 2014; 82:1985–1999. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Abstract

The multi‐functional protein gC1qR has been reported to interact with an arginine‐rich motif in the C‐tail of hamster α1B‐adrenoceptors (ARs), controlling their expression and subcellular localization. Since a similar motif is present in α1D‐, but not α1A‐ARs, we studied the specificity of this interaction. Human α1‐ARs, tagged at their amino termini with Flag epitopes, were coexpressed in HEK293 cells with gC1qR containing a hemaglutinin (HA) tag at its carboxy terminus. Immunoprecipitation studies showed that Flag‐α1B‐ or α1D‐, but not α1A‐ARs, caused coimmunoprecipitation of HA‐gC1qR, while immunoprecipitation of HA‐gC1qR caused coimmunoprecipitation of Flag‐α1B‐ or α1D‐, but not α1A‐ARs, supporting specific interactions between subtypes. C‐terminal truncation of Flag‐α1‐ARs prevented interaction with HA‐gC1qR, supporting previous conclusions about the role of the C‐terminal arginine‐rich motif. These studies suggest that gC1qR interacts specifically with α1B‐ and α1D‐, but not α1A‐ARs, and this interaction depends on the presence of an intact C‐tail.  相似文献   

19.
Total cytoplasmic poly(A)-containing RNA from rat, calf and duck lens was fractionated by electrophoresis in methylmercury hydroxide-containing agarose gels. RNA electrophoresed in parallel lanes was either transferred onto nitrocellulose and hybridized with total cDNA synthesized on the initial mRNA or was recovered from individual gel fractions for in vitro translation in a reticulocyte cell-free system. This allowed the identification and size-characterization of individual mRNA species encoding α-, β-, γ- and δ-crystallin polypeptides. The 14 S mRNA fraction of rat lens comprises two αA2-mRNAs of approximately 1250 and 1350 nucleotides and the αAIns-mRNA with a size similar to that of the largest αA2-mRNA. The calf lens 14 S mRNA fraction harbors a heterogeneous population of αA2-mRNA. In the same fraction another mRNA encoding a polypeptide, designated X, has been found sharing no homology with αA sequences. The duck lens αA2-mRNA appears to be 400–450 bases longer than the rat and calf lens αA2-mRNAs. Furthermore, in contrast to the single αB2-mRNA in rat and calf lens, two αB2-mRNAs have been identified in duck lens, one, the major species, similar in size to the αB2-mRNA in rat and calf lens (800 bases), and the other species 700 nucleotides longer. The large size differences among the αA2- and αB2-mRNAs most likely reside in their 3′-untranslated sequences.  相似文献   

20.
LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120 kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35 kDa) or CD98(80 kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [3H]His transport inhibited by hydrophobic amino acids. Antiport of [3H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [3H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [3H]Leu and [3H]Gln with respect to [3H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号