首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent phylogenetic analyses imply a distant relationship and long separated evolution of two-toed sloths (Choloepus) and three-toed sloths (Bradypus). No known fossil sloth is interpreted to have been suspensory. As a consequence, the suspensory posture and locomotion of the extant genera likely evolved convergently in both lineages, forming a new framework for the analysis of functional aspects of the locomotor apparatus of extant tree sloths. The suspensory posture and locomotion has altered functional demands from the phylogenetically plesiomorphic non-suspensory pronograde situation. Here, anatomical traits that have been argued to be of adaptive significance for quadrupedal suspensory locomotion are reviewed and the evolution of these traits is discussed in light of the new framework. Experimental data are largely limited to Choloepus, but help to deduce functional aspects of the anatomy in Bradypus as well. The most important adaptive traits are hands and feet modified into relatively rigid hook-like appendages, great mobility of all joints proximal to the midcarpal and transverse tarsal joints, relatively long arms with a relatively short scapula, a rounded thorax with a small diameter, a highly mobile sterno-clavicular articulation, and emphasis on powerful flexion in the proximal limb joints via advantageous lever arms. Despite these changes, patterns of limb kinematics remained conservative during the course of evolution in the lineages leading to extant tree sloths, and it is suggested here that this also applies to the pattern of neuromuscular control of limb movements during locomotion. Morphological ‘solutions’ to altered functional demands posed by inversed orientation of the body differ in the two genera of extant tree sloths, thereby corroborating the proposed diphyly. Convergent evolution in tree sloths may be attributed to functional constraints posed by fossorial adaptations in early Xenarthra that canalized sloths to adopt a suspensory posture and locomotion in the arboreal habitat.  相似文献   

2.
This study is undertaken in order to evaluate specific hypotheses of relationship among extant and extinct sloths (Mammalia, Xenarthra, Tardigrada). Questions of particular interest include the relationship among the three traditional family groupings of extinct ground sloths and the monophyletic or diphyletic origin of the two genera of extant tree sloths. A computer‐based cladistic investigation of the phylogenetic relationships among 33 sloth genera is performed based upon 286 osteological characteristics of the skull, lower jaw, dentition and hyoid arch. Characters are polarized via comparisons with the following successive outgroups, all members of the supraordinal grouping Edentata: the Vermilingua, or anteaters; the Cingulata, or armadillos and glyptodonts; the Palaeanodonta; and the Pholidota, or pangolins. The results of the analysis strongly corroborate the diphyly of living tree sloths, with the three‐toed sloth Bradypus positioned as the sister‐taxon to all other sloths, and the two‐toed sloth Choloepus allied with extinct members of the family Megalonychidae. These results imply that the split between the two extant sloth genera is ancient, dating back perhaps as much as 40 Myr, and that the similarities between the two taxa, including their suspensory locomotor habits, present one of the most dramatic examples of convergent evolution known among mammals. The monophyly of the three traditional ground sloth families Megatheriidae, Megalonychidae and Mylodontidae is confirmed in the present study, and the late Miocene–Pleistocene nothrotheres are shown to form a clade. It is suggested that this latter clade merits recognition as a distinct family‐level grouping, the family Nothrotheriidae. The monophyly of the Megatherioidea, a clade including members of the families Megatheriidae, Megalonychidae and Nothrotheriidae, is also supported. Within Megatherioidea, the families Nothrotheriidae and Megatheriidae form a monophyletic group called the Megatheria. The relationships within the families Megatheriidae and Mylodontidae are fully and consistently resolved, although the hypothesized scheme of relationships among the late Miocene to Pleistocene members of the mylodontid subfamily Mylodontinae differ strongly from any proposed by previous authors. Within the family Megalonychidae, Choloepus is allied to a monophyletic grouping of West Indian sloths, although the relationships within this clade are not fully resolved. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 255–305.  相似文献   

3.
Recent discovery of a supernumerary dental anomaly in two‐toed sloths led to an extensive review of extant sloth specimens to look for additional anomalies. In total, 881 museum specimens were examined. These revealed two primary types of anomalies, hyperdontia (extra teeth) and anodontia (loss of teeth), occurring at a rate of 2.4% (n = 21). Two‐toed sloths, Choloepus, were more likely to have hyperdontia in the anterior dentition, whereas three‐toed sloths, Bradypus, experienced anodontia more frequently with the upper caniniforms. Both genera experienced both anomalies. The majority affected the upper dentition, with only three specimens exhibiting mandibular anomalies. Beyond the patterns of tooth positioning, all anomalies were random with respect to age, sex and geography. A few specimens not counted in the initial assessment expressed incomplete anodontia, indicating that the loss occurred postnatally and was not an embryological anomaly. For Bradypus, the findings provide new support for the hypothesis that the taxon represents a neotenic lineage and opens new possibilities about its relationship to the extinct ground sloths with a suggested rooting above that of the basal position it typically occupies for Folivora.  相似文献   

4.
Lemurs are notable for encompassing the range of body‐size variation for all primates past and present—close to four orders of magnitude. Benefiting from the phylogenetic proximity of subfossil lemurs to smaller‐bodied living forms, we employ allometric data from the skull to probe the ontogenetic bases of size differentiation and morphological diversity across these clades. Building upon prior pairwise comparisons between sister taxa, we performed the first clade‐wide analyses of craniomandibular growth allometries in 359 specimens from 10 lemuroids and 176 specimens from 8 indrioids. Ontogenetic trajectories for extant forms were used as a criterion of subtraction to evaluate morphological variation, and putative adaptations among sister taxa. In other words, do species‐level differences in skull form result from the differential extension of common patterns of relative growth? In lemuroids, a pervasive pattern of ontogenetic scaling is observed for facial dimensions in all genera, with three genera also sharing relative growth trajectories for jaw proportions (Lemur, Eulemur, Varecia). Differences in masticatory growth and form characterizing Hapalemur and fossil Pachylemur likely reflect dietary factors. Pervasive ontogenetic scaling characterizes the facial skull in extant Indri, Avahi, and Propithecus, as well as their larger, extinct sister taxa Mesopropithecus and Babakotia. Significant interspecific differences are observed in the allometry of indrioid masticatory proportions, with variation in the mechanical advantage of the jaw adductors and stress‐resisting elements correlated with diet. As the growth series and adult data are largely coincidental in each clade, interspecific variation in facial form may result from selection for body‐size differentiation among sister taxa. Those cases where trajectories are discordant identify potential dietary adaptations linked to variation in masticatory forces during chewing and biting. Although such dissociations highlight selection to uncouple shared ancestral growth patterns, they occur largely via transpositions and retention of primitive size‐shape covariation patterns or relative growth coefficients. Am. J. Primatol. 72:161–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Early Miocene sloths are represented by a diversity of forms ranging from 38 to 95?kg. Their forelimb bones differ in shape from those of their closest living relatives (less than 10?kg), Bradypus and Choloepus. Such differences in shape could be related to differences in substrate preference (arboreal, semiarboreal, or ground-dwelling) or substrate use (climbing, digging, etc.). In order to detect putative patterns related to substrate preference, 21 linear measurements were defined and taken on the forelimb bones. The sample was composed of 22 specimens of fossil sloths and 134 specimens of extant mammals (marsupials, xenarthrans, pangolins, rodents, primates, and carnivorans), including arboreal, semiarboreal, and ground-dwelling taxa. Principal Components Analyses were performed on logarithms of original measurements, while functional indexes (Index of Fossorial Ability, Brachial Index, and Distal Epiphyseal Index) were calculated on raw data. The first three PCs accounted for 93.8% of the cumulative variability. PC1 roughly represented size, while positive values of PC2 represented mechanical advantage for features related to digging habits. Fossil sloths were clearly separated from living ones, sharing a common morphospace with anteaters and other good diggers. Conversely, living sloths shared a morphospace with primates. Similar results were obtained for DEI and IFA, with fossil sloths showing similar values to extant digging mammals. These results suggest that fossil sloths have a different functional pattern of forelimb use than that of extant ones, probably more similar to vermilinguas and pangolins, including putative good digging capabilities and/or semiarboreal habits. Substrate use seems to be interfering in the analysis of substrate preference based on forelimb morphology.  相似文献   

6.
Haitian species of the extinct ground sloth genus Neocnus (Mammalia: Pilosa: Megalonychidae) have previously been hypothesized to have a much reduced jugal bone and a correspondingly reduced masseter musculature but a paucity of specimens has prevented further investigation of this hypothesis. Recent discovery of jugal bones belonging to Haitian specimens of Neocnus within the University of Florida Museum collections enables the element to be more accurately described. The discovery also makes it possible to explore mastication in these sloths. Osteological characters related to feeding were examined, along with comparative estimations of bite force with the extant tree sloths, Bradypus and Choloepus, and their known dietary habits as a means to infer aspects of the paleodiet of Neocnus. There is a significant difference in moment arm calculations for m. masseter between predicted and actual jugals, but the overall significance for bite force is lost and hampered by small sample size. Neocnus demonstrates a variety of characters that are similar to those of Bradypus and not to Choloepus, which is a close phylogenetic relative. The masticatory musculature of Neocnus enabled a chewing cycle emphasizing a grinding combination of mesiodistal and linguobuccal movements of the molariform dentition. The orientations of m. masseter and m. temporalis are estimated to produce relatively high bite force ratios that imply a masticatory system with stronger versus faster components. Because of the similarity of bite forces and jaw mechanics to those of Bradypus, in addition to a number of osteological adaptations indicative of herbivorous grazers (elevated mandibular condyle, large and complex masseter, and robust angular process), the Haitian forms of Neocnus are considered to have been selective feeders with a folivorous diet. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
We analyze patterns of subchondral bone apparent density in the distal femur of extant primates to reconstruct differences in knee posture, discriminate among extant species with different locomotor preferences, and investigate the knee postures used by subfossil lemur species Hadropithecus stenognathus and Pachylemur insignis. We obtained computed tomographic scans for 164 femora belonging to 39 primate species. We grouped species by locomotor preference into knuckle-walking, arboreal quadruped, terrestrial quadruped, quadrupedal leaper, suspensory and vertical clinging, and leaping categories. We reconstructed knee posture using an experimentally validated procedure of determining the anterior extent of the region of maximal subchondral bone apparent density on a median slice through the medial femoral condyle. We compared subchondral apparent density magnitudes between subfossil and extant specimens to ensure that fossils did not display substantial mineralization or degradation. Subfossil and extant specimens were found to have similar magnitudes of subchondral apparent density, thereby permitting comparisons of the density patterns. We observed significant differences in the position of maximum subchondral apparent density between leaping and nonleaping extant primates, with leaping primates appearing to use much more flexed knee postures than nonleaping species. The anterior placement of the regions of maximum subchondral bone apparent density in the subfossil specimens of Hadropithecus and Pachylemur suggests that both species differed from leaping primates and included in their broad range of knee postures rather extended postures. For Hadropithecus, this result is consistent with other evidence for terrestrial locomotion. Pachylemur, reconstructed on the basis of other evidence as a committed arboreal quadruped, likely employed extended knee postures in other activities such as hindlimb suspension, in addition to occasional terrestrial locomotion.  相似文献   

8.
The large-bodied hominoid from Moroto, Uganda has until recently been known only from proconsulid like craniodental remains and some vertebrae with modern ape like features. The discovery of two partial femora and the glenoid portion of a scapula demonstrates that the functional anatomy of Morotopithecus differed markedly from other early and middle Miocene hominoids. Previous studies have consistently associated the vertebral remains with a short, stiff back and with orthograde postures. Although the proximal femur more closely resembles the femora of monkeys than of apes and suggests a moderate degree of hip abduction, the distal femur resembles those of extant large bodied apes and suggests a varied loading regime and an arboreal repertoire that may have included substantial vertical climbing. The femoral shaft displays uniformly thick cortical bone, beyond the range of thickness seen in extant primates, and signifies higher axial loading than is typical of most extant primates. The glenoid fossa is broad and uniformly curved as in extant suspensory primates. Overall, Morotopithecus is reconstructed as an arboreal species that probably relied on forelimb-dominated, deliberate and vertical climbing, suspension and quadrupedalism. Morotopithecus thus marks the first appearance of certain aspects of the modern hominoid body plan by at least 20 Ma. If the suspensory and orthograde adaptations linking Morotopithecus to extant apes are synapomorphies, Morotopithecus may be the only well-documented African Miocene hominoid with a close relationship to living apes and humans.  相似文献   

9.
Tardigrade xenarthrans are today represented only by the two tree sloth genera Bradypus and Choloepus, which inhabit the Neotropical rainforests and are characterized by their slowness and suspensory locomotion. Sloths have been recognized in South America since the early Oligocene. This monophyletic group is represented by five clades traditionally recognized as families: Bradypodidae, Megalonychidae, Mylodontidae (?), Megatheriidae (?) and Nothrotheriidae (?). A new nothrotheriid ground sloth represented by a dentary and several postcranial elements, Aymaratherium jeani gen. nov. , sp. nov. , from the early Pliocene locality of Pomata‐Ayte (Bolivia) is reported. This small‐ to medium‐sized species is characterized especially by its dentition and several postcranial features. It exhibits several convergences with the ‘aquatic’ nothrotheriid sloth Thalassocnus and the giant megatheriid ground sloth Megatherium (M.) americanum, and is interpreted as a selective feeder, with good pronation and supination movements. The tricuspid caniniform teeth of Aymaratherium may represent a transitional stage between the caniniform anterior teeth of basal megatherioids and basal nothrotheriids (1/1C‐4/3M as in Hapalops or Mionothropus) and the molariform anterior teeth of megatheriids (5/4M, e.g. Megatherium). To highlight the phylogenetic position of this new taxon among nothrotheriid sloths, we performed a cladistic assessment of the available dental and postcranial evidence. Our results, derived from a TNT treatment of a data matrix largely based on a published phylogenetic data set, indicate that Aymaratherium is either sister taxon to Mionothropus or sister to the clade Nothrotheriini within Nothrotheriinae. They further support the monophyly of both the Nothrotheriinae and the Nothrotheriini, as suggested previously by several authors.  相似文献   

10.
In order to gain insight into the function of the extant sloth locomotion and its evolution, we conducted a detailed videoradiographic analysis of two-toed sloth locomotion (Xenarthra: Choloepus didactylus). Both unrestrained as well as steady-state locomotion was analyzed. Spatio-temporal gait parameters, data on interlimb coordination, and limb kinematics are reported. Two-toed sloths displayed great variability in spatio-temporal gait parameters over the observed range of speeds. They increase speed by decreasing the durations of contact and swing phases, as well as by increasing step length. Gait utilization also varies with no strict gait sequence or interlimb timing evident in slow movements, but a tendency to employ diagonal sequence, diagonal couplet gaits in fast movements. In contrast, limb kinematics were highly conserved with respect to ‘normal’ pronograde locomotion. Limb element and joint angles at touch down and lift off, element and joint excursions, and contribution to body progression of individual elements are similar to those reported for non-cursorial mammals of small to medium size. Hands and feet are specialized to maintain firm connection to supports, and do not contribute to step length or progression. In so doing, the tarsometatarsus lost its role as an individual propulsive element during the evolution of suspensory locomotion. Conservative kinematic behavior of the remaining limb elements does not preclude that muscle recruitment and neuromuscular control for limb pro- and retraction are also conserved. The observed kinematic patterns of two-toed sloths improve our understanding of the convergent evolution of quadrupedal suspensory posture and locomotion in the two extant sloth lineages.  相似文献   

11.
Modern sloths are among the more characteristic mammals of South and Central American faunas. Recent discovery in four Paleogene, 22 Neogene, and dozens of Pleistocene fossiliferous localities in the tropics has revealed an unexpected paleobioversity constituted by some 81 fossil sloth species. Probably originating in southern South America near the Eocene/Oligocene transition, sloths were represented in the tropics during the late Oligocene by Pseudoglyptodon, Mylodontidae, and Megalonychidae. The latter occupied the West Indies between at least the late early Miocene and late Pleistocene, and two mylodontid clades, Octodontobradyinae and Urumacotheriinae, were characteristic of Amazonian localities from the Colhuehuapian and the Laventan periods, respectively, until the end of the Miocene. Megatheriinae and Nothrotheriidae appeared during the middle Miocene, colonizing the tropics and then North America, where Mylodontidae and Megalonychidae had already been present since the early late Miocene. Nothrotheriids are more abundant and diversified during the late Miocene in the tropics than in southern South America. Remains closely related to either of the modern sloths are absent from the fossil record, including those in the tropics. The characteristic suspensory posture of Bradypus and Choloepus appeared independently and likely after the Miocene epoch, and thus well after the hypothesized split suggested by molecular studies of the respective clades of these genera. Given their current widespread distribution in and reliance on the tropics, prospecting efforts for the direct fossil kin of suspensory sloths should concentrate on deposits in the Amazonian region, as this area has shown promise in producing fossil sloths.  相似文献   

12.
Surface areas of humeral and femoral heads scale largely as a function of body size. However, differences in the relative sizes of these articular surfaces are correlated with differential joint mobility and force transmission through fore- and hindlimbs. They can therefore assist interpretation of the positional behavior of extinct species. In this paper, we document variation in ratios of humeral head surface area to femoral head surface area among extant primates and other mammals. We then examine a group of extinct primates: the subfossil lemurs of Madagascar. Many Malagasy le murs, including some giant extinct species with very long forelimbs and short hindlimbs, have relatively small humeral heads and large femoral heads. We explore the adaptive implications of this pattern. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Recently discovered wrist bones of the Malagasy subfossil lemurs Babakotia radofilai, Palaeopropithecus ingens, Mesopropithecus dolichobrachion, and Megaladapis madagascariensis shed new light on the postcranial morphologies and positional behaviors that characterized these extinct primates. Wrist bones of P. ingens resemble those of certain modern hominoids in having a relatively enlarged ulnar head and dorsally extended articular surface on the hamate, features related to a large range of rotation at the inferior radioulnar and midcarpal joints. The scaphoid of P. ingens is also similar to that of the extant tree sloth Choloepus in having an elongate, palmarly directed tubercle forming a deep radial margin of the carpal tunnel for the passage of large digital flexors. In contrast, wrist remains of Megaladapis edwardsi and M. madagascariensis exhibit traits observed in the hands of extant pronograde, arboreal primates; these include a dorsopalmarly expanded pisiform and well-developed "spiral" facet on the hamate. Moreover, Megaladapis spp. and Mesopropithecus dolichobrachion possess bony tubercles (e.g., scaphoid tubercle and hamate hamulus) forming the carpal tunnel that are relatively similar in length to those of modern pronograde lemurs. Babakotia and Mesopropithecus differ from Megaladapis in exhibiting features of the midcarpal joint related to frequent supination and radioulnar deviation of the hand characteristic of animals that use vertical and quadrumanous climbing in their foraging behaviors. Comparative analysis of subfossil lemur wrist morphology complements and expands upon prior inferences based on other regions of the postcranial skeleton, and suggests a considerable degree of locomotor and postural heterogeneity among these recently extinct primates.  相似文献   

14.
The utility of orthodentine microwear analysis as a proxy for dietary reconstruction in xenarthrans (tree sloths, armadillos) was quantitatively and statistically accessed via low‐magnification stereomicroscopy. Features such as number of scratches and pits, as well as presence of gouges, hypercoarse scratches, > four large pits, > four cross scratches, and fine, mixed or coarse scratch texture were recorded in 255 teeth from 20 extant xenarthran species. Feature patterns are consistent with scar formation through abrasional (tooth–food) and attritional (tooth–tooth) contact. Number of scratches is the most dietary diagnostic microwear variable for xenarthrans, with herbivorous sloths characterized by > ten scratches and nonherbivorous armadillos by < ten scratches. Discriminant function analysis differentiated arboreal folivores (sloths) and frugivore‐folivores (sloths) both from each other and from fossorial carnivore‐omnivores (armadillos) and insectivores (armadillos). Microwear patterns in carnivore‐omnivores and insectivores are difficult to distinguish between; armadillo microwear may reflect a fossorial lifestyle (grit consumption) rather than primary diet. Cabassous centralis is anomalous in its microwear signal relative to all other insectivores. To test the utility of orthodentine microwear analysis as an indicator of palaeodiet in extinct xenarthrans, microwear in the ground sloth Nothrotheriops shastensis was quantitatively and statistically compared to microwear in extant taxa. Microwear patterns in N. shastensis are most comparable to extant folivores based on scratch number and hierarchical cluster analysis. This strongly supports an herbivorous diet for N. shastensis that is corroborated by multiple independent lines of evidence. Thus, orthodentine microwear analysis can be used to reconstruct diet in extinct xenarthrans. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 201–222.  相似文献   

15.
16.

Objectives

Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here, we apply for the first time a “whole‐epiphyses” approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and Australopithecus africanus.

Materials and methods

We use a “whole‐epiphysis” methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, Ateles and A. africanus (StW 328).

Results

There are important differences in the quantification of trabecular parameters using a “whole‐epiphysis” versus a VOI‐based approach. Variation in trabecular structure across knuckle‐walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest A. africanus may have still used its forelimbs for arboreal locomotion.

Discussion

A whole‐epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.
  相似文献   

17.
Variation in body size is well documented for both extant and extinct Malagasy primates, and appears to be correlated with geographic patterns of resource seasonality. Less attention has been paid to extant lemurs in subfossil collections, although it has been suggested that subfossil forms of extant species are characterized by greater size than their modern counterpart. This trend of phyletic size change has been related to climate change, habitat fragmentation, or human hunting. However, space- and time-averaging in the subfossil samples of previous studies may have obscured more general ecogeographic patterns underlying these size differences. Our objective is to examine size variation in subfossil still-extant primates within a regional comparative context to determine if subfossil and living forms conform to similar ecogeographic patterns. We report on the subfossil still-extant primate assemblage from Ankilitelo, southwestern Madagascar (approximately 500 yr BP) to test this hypothesis. The Ankilitelo primates were compared with museum specimens of known locality. Extant taxa were assigned to one of five distinct ecogeographic regions, including spiny thicket, dry deciduous forest, succulent woodland, lowland and subhumid rainforest. Comparisons of tooth size in extant lemurs reveal significant geographical patterns of variation within genera. In general, the primates from Ankilitelo are indeed larger than their modern counterpart. However, these differences fit an ecoregional model of size variation, whereby Ankilitelo species are comparable in size to living forms inhabiting ecoregions present near the cave today. This suggests that Malagasy primates have been subjected to similar patterns of resource seasonality for at least 500 years.  相似文献   

18.
The Xenarthra, particularly the Tardigrada, are with the Notoungulata and Marsupialia among the most diversified South American mammals. Lujanian South American Land Mammal Age localities from the coastal Piedra Escrita site and Andean Casa del Diablo Cave, Peru, have yielded three specimens of the Megalonychidae Diabolotherium nordenskioldi gen. nov. This singular fossil sloth exhibits a peculiar mosaic of cranial and postcranial characters. Some are considered convergent with those of other sloths (e.g. 5/4 quadrangular teeth, characteristic of Megatheriidae), whereas others clearly indicate climbing capabilities distinct from the suspensory mode of extant sloths. The arboreal mode of life of D. nordenskioldi is suggested by considerable mobility of the elbow, hip, and ankle joints, a posteriorly convex ulna with an olecranon shorter than in fossorial taxa, a radial notch that faces more anteriorly than in other fossil sloths and forms an obtuse angle with the coronoid process (which increases the range of pronation–supination), a proximodistally compressed scaphoid, and a wide range of digital flexion. D. nordenskioldi underscores the great adaptability of Tardigrada: an arboreally adapted form is now added to the already known terrestrial, subarboreal, and aquatic (marine and freshwater) fossil sloths. A preliminary phylogenetic analysis of the Tardigrada confirmed the monophyly of Megatherioidea, Nothrotheriidae, Megatheriidae, and Megalonychidae, in which Diabolotherium is strongly nested.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 179–235.  相似文献   

19.
Of Paleocene primates only Plesiadapis is complete enough to reconstruct locomotor patterns; it was an arboreal scrambler, perhaps functioning like a large squirrel. Eocene lemurs (adapids) show an array of locomotor types much like certain modern Malagasy lemurs. The European Eocene tarsiid Necrolemur and the American Hemiacodon show the beginning of saltatory specializations in possession of elongated calcaneum and astragalus. Although not a direct anthropoid ancestor Necrolemur seems one of the best models for representing the early locomotor type from which higher primates arose. The Oligocene primates of Egypt (among which are the earliest undoubted pongids) are preserved with a forest fauna. Structures of long bones suggest they were arboreal. A considerable number of Miocene ape bones are known and those of Pliopithecus and Dryopithecus indicate similar adaptations. Of African Miocene forms, Dryopithecus major was a large, gorilla-sized animal, and hence perhaps primarily terrestrial. D. africanus was somewhat more arboreally adapted and a partial brachiator. The Italian fossil Oreopithecus, a coal-swamp dweller, shows indications of bipedality in pelvic structure. Ramapithecus, which is presumably ancestral to Australopithecus, shows palatal and facial patterns much like these later hominids, and probably hence had locomotor patterns more like men than like living apes; its lack of the dental specializations of apes strongly supports this suggestion.  相似文献   

20.
Phalanges are considered to be highly informative in the reconstruction of extinct primate locomotor behavior since these skeletal elements directly interact with the substrate during locomotion. Variation in shaft curvature and relative phalangeal length has been linked to differences in the degree of suspension and overall arboreal locomotor activities. Building on previous work, this study investigated these two skeletal characters in a comparative context to analyze function, while taking evolutionary relationships into account. This study examined the correspondence between proportions of suspension and overall substrate usage observed in 17 extant taxa and included angle of curvature and relative phalangeal length. Predictive models based on these traits are reported. Published proportions of different locomotor behaviors were regressed against each phalangeal measurement and a size proxy. The relationship between each behavior and skeletal trait was investigated using ordinary least-squares, phylogenetic generalized least-squares (pGLS), and two pGLS transformation methods to determine the model of best-fit. Phalangeal curvature and relative length had significant positive relationships with both suspension and overall arboreal locomotion. Cross-validation analyses demonstrated that relative length and curvature provide accurate predictions of relative suspensory behavior and substrate usage in a range of extant species when used together in predictive models. These regression equations provide a refined method to assess the amount of suspensory and overall arboreal locomotion characterizing species in the catarrhine fossil record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号