首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The term ‘search image’ refers to an animal's heightened ability to detect a specific cryptic prey, after experience with that prey. Formulated in 1960 by Tinbergen (Archives Neerlandaises de zoologie, vol. 13, pp. 265–343), the search image concept has been the subject of much research, albeit almost entirely based on visual search cues in birds of prey. Given the theoretical and practical importance of this concept for foraging or searching in general, we set out to investigate whether dogs could form olfactory search images for explosive odours. Seven experienced explosives detector dogs were first tested for their ability to detect 30 g of the explosives 2,4,6‐trinitrotoluene (TNT), RDX + polyisobutylene + di(2‐ethylhexyl)sebacate + fuel oil (C4) or pentaerythritol tetranitrate (PETN) placed in various containers randomly distributed along a 300‐m limestone track. In consecutive stages of the experiment, we altered the relative percentages of the three explosives. The results showed that the percentage of TNT containers detected by the dogs increased in trials that followed placing of a high percentage of TNT relative to other explosives and decreased in trials that follwed placing of a relatively low percentage of TNT containers. The percentage detection of C4 and PETN was not influenced by their relative abundance at any stage. Overall, these results suggest that dogs can form an olfactory search image that might aid in prey/target detection.  相似文献   

2.
A highly sensitive, rapid and economical method for the determination of amlodipine (AM) in biological fluids was developed using a peroxyoxalate chemiluminescence (CL) system in a lab‐on‐a‐chip device. Peroxyoxalate‐CL is an indirect type of CL that allows the detection of native fluorophores or compounds derivatized with fluorescent labels. Here, fluorescamine was reacted with AM, and the derivatization product was used in a bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system. Fluorescamine reacts selectively with aliphatic primary amine at neutral or basic pH. As most of the calcium channel blocker and many cardiovascular drugs do not contain primary amine, the developed method is highly selective. The parameters that influenced the CL signal intensity were studied carefully. These included the chip geometry, pH, concentration of reagents used and flow rates. Moreover, we confirmed our previous observation about the effects of imidazole, which is commonly used in the bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system as a catalyst, and found that the signal was significantly improved when imidazole was absent. Under optimized conditions, a calibration curve was obtained with a linear range (10–100 µg/L). The limit of detection was 3 µg/L, while the limit of quantification was 10 µg/L. Finally the method was applied for the determination of AM in biological fluids successfully. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Pesticides have become part of food protection since their inception. Endosulfan, an organochlorine insecticide, has been used against insect pests such as whiteflies, aphids, red spiders and mites. Methods of immunochemical assays have been devised for the determination and analysis of pesticides and commonly used for the analysis of contaminants in food, water, soil and body fluids. Chicken IgY antibodies raised against endosulfan haptens were used for the detection of endosulfan. We have compared colorimetric (CO) and chemiluminescence (CL) enzyme‐linked immunosorbent assay (ELISA) techniques for the detection of endosulfan isomers in a food matrix. CL ELISA assay was found to be more sensitive than CO assay. The mean recovery was 81.2–95.6% for α‐ and β‐endosulfan‐spiked food samples with 2.8–4.6% relative standard deviation. The detection of the endosulfan isomers was linear in the range 100 µg/mL–5 fg/mL, with a limit of detection at 100 µg/mL and 5 fg/mL for the CL ELISA method and 100 µg/mL and 1 ng/mL for the CO ELISA method respectively. These methods can be used for the rapid and reliable detection of organochlorine pesticide endosulfan. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The interaction of benproperine phosphate (BPP) with eriochrome blue black R (EBBR) in the presence of sodium dodecylbenzene sulphonate (SDBS) was studied using resonance light scattering (RLS) technology and ultraviolet‐visual (UV‐vis) spectrophotometry. Under optimum conditions, BPP reacts with EBBP and SDBS to form a three‐component complex, which results in strong RLS signal and a new RLS peak. The enhanced RLS intensities are proportional to the concentration of BPP over the range 0.6–28.0 µg/mL, with a detection limit of 0.053 µg/mL. The affecting factors as well as the influence of coexisting substances were investigated. The results indicate that this assay method could be applied to the determination of BPP in pharmaceuticals, serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We report a flow‐injection biosensor system with a capacitive transducer for assay and quality control of human immunoglobulin G (hIgG). The sensing platform is based on self‐assembled monolayers (SAMs) of carboxylic acid terminated alkyl‐thiols with covalently attached concanavalin A. The electrochemical characteristics of the sensor surface were assessed by cyclic voltammetry using a permeable redox couple (potassium ferricyanide). The developed biosensor proved capable of performing a sensitive label‐free assay of hIgG with a detection limit of 1.0 µg mL?1. The capacitance response depended linearly on hIgG concentration over the range from 5.0 to 100 µg mL?1, in a logarithmic plot. Typical measurements were performed in 15 min and up to 18 successive assays were achieved without significant loss of sensitivity using a single electrode. In addition, the biosensor can detect hIgG aggregates with concentrations as low as 0.01% of the total hIgG content (5.0 µg mL?1). Hence, it represents a potential post‐size‐exclusion chromatography–UV (post‐SEC–UV) binding assay for in‐process quality control of hIgG, which cannot be detected by SEC–UV singly at concentrations below 0.3% of the total hIgG content. Biotechnol. Bioeng. 2009; 104: 312–320 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
A simple, rapid and sensitive chemiluminescent (CL) method for the assay of venlafaxine (VEN) in pharmaceutical formulations and serum samples by a two‐chip device is proposed. The method is based on the reaction of this drug with a tris(2,2′‐bipyridyl) ruthenium(II)–peroxydisulphate CL system. The optimum chemical conditions for CL emission were investigated. The calibration graph was linear for the concentration range 0.02–8.0 µg/mL. The detection and quantification limits were found to be 0.006 and 0.018 µg/mL, respectively, while the relative standard deviation (RSD) was <2.0%. The present CL procedure was applied to the determination of VEN in pharmaceutical formulations and serum samples; the recovery levels were in the range 96.5–101.2%. The results suggest that the method is unaffected by the presence of common formulation excipients found in these samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this report, an artificial antigen (PFLX–BSA: Pefloxacin connected bovine serum albumin) was successfully prepared. The monoclonal antibody against pefloxacin was produced and characterized using a direct competitive ELISA. The linear range of detection was 0.115–6.564 µg/L. The limit of detection defined as IC15 was 0.170 ± 0.05 µg/L and the IC50 was 0.902 ± 0.03 µg/L. The antibody variable region genes were amplified, assembled, and sequenced. A three–dimensional structural model of the variable region was constructed to study the mechanism of antibody recognition using molecular docking analysis. Three predicted essential amino acids, Thr53, Arg97 of heavy chain and Thr52 of light chain, were mutated to verify the theoretical model. Three mutants lost binding activity signi?cantly against pefloxacin as predicted. These may provide useful insights for studying antigen–antibody interaction mechanisms to improve antibody affinity maturation in vitro.  相似文献   

9.
A chemiluminescent enzyme immunoassay (CLEIA) was compared to an ultraperformance liquid chromatography tandem mass spectroscopy (UPLC‐MS/MS) procedure for the analysis of zeranol and its metabolites in bovine tissue samples. Apparent recoveries from fortified samples by both methods were comparable at 0.5–4.0 µg/kg and a significant correlation was obtained. For CLEIA analysis, hapten mimicking the analyte was first synthesized and conjugated with the carrier protein bovine serum albumin as the immunogen to produce monoclonal antibody. The obtained antibody showed extensive cross‐reactivity toward zeranol metabolites (zearalanone). The limit of detection of CLEIA and UPLC‐MS/MS was 0.05 µg/kg and 0.5 µg/kg, respectively. Recoveries of both methods for fortified samples were higher than 75.0% with the coefficient of variation less than 15%. These results indicated that the combination of screening with CLEIA and confirmation with UPLC‐MS/MS for zeranol and its metabolites would be a reliable method for a large number of bovine samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Pentaerythritol tetranitrate (PETN) is an explosive chemical that has been detected in environmental media. Although previous toxicology studies have shown PETN to be relatively benign, a lack of available information concerning developmental and reproductive effects from oral PETN exposure was needed. Sprague‐Dawley rats were exposed to oral daily adjusted volumetric doses of 0, 100, 500, or 1,000 mg PETN/kg body mass in a corn oil vehicle for up to 56 days. Mating, duration of gestation, body weight, feed consumption, overall condition of adults, and the number, sex, and condition of pups were recorded. Histological examinations were also performed on the ovaries, testes, and epididymides of animals from the control and the highest dose groups. Other environmental criteria, water solubility, octanol/water partition coefficient, and biodegradation rates of neat PETN were also determined. Only body weights and feed consumption were affected by treatment; however, these differences may be attributed more to volumetric adjustments of vehicle in the control and high‐dose groups than to PETN toxicity. No adverse effects on development or reproduction from PETN exposure were observed. Water solubility, octanol water partition coefficient, and water suspension and biodegradation rates suggest PETN is unlikely to transport or bioaccumulate in the environment to any appreciable extent. Additionally, biotic processes are most likely faster in breaking down PETN than the abiotic processes involved in dissolving PETN in water. Birth Defects Res (Part B) 86:65‐71, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
A novel chiral sensing platform, employing silver nanoparticles capped with N‐acetyl‐L‐cysteine (NALC‐Ag NPs), was utilized for the discrimination of L‐tyrosine and D‐tyrosine. This nanosensor, which could be used as an optical sensing unit and chiral probe, was characterized by transmission electron microscopy (TEM) and resonance Rayleigh scattering (RRS) spectroscopy. After the proposed sensing platform interacted with L‐tyrosine and D‐tyrosine, a decreased resonance scattering signal was only obtained from L‐tyrosine. This phenomenon offered a useful assay for the selectivity and determination of L‐tyrosine with the RRS method. The linear range and detection limit of L‐tyrosine were 0.2838–20.0 µg⋅mL‐1 and 0.0860 µg⋅mL‐1, respectively. In addition, experimental factors such as acidity, interaction time, and the concentration of enantiomers were investigated with regard to the effect on enantioselective interaction. Chirality 27:194–198, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Antibodies are a promising tool for the fast and selective trace detection of explosives. Unfortunately, the production of high-quality antibodies is not trivial and often expensive. Therefore, excellent antibodies are a rare and limiting resource in fields such as biosensing, environmental analysis, diagnostics, cancer therapy, and proteomics. Here, we report the synthesis, bioconjugation, and application of the structurally optimized hapten 6-(2,4,6-trinitro)-phenylhexanoic acid to improve the selectivity and sensitivity of antibodies for the detection of one of the most important explosives, trinitrotoluene. With a conjugate of bovine serum albumin and a highly purified N-hydroxy-succinimide (NHS)-activated hapten, two rabbits were immunized to obtain polyclonal antibodies. The immunization process was monitored by enzyme-linked immunosorbent assay to gain information about the progress of antibody titer and affinity. Finally, the polyclonal antibodies reached an affinity constant of (5.1 ± 0.6) × 10(9) l/mol (rabbit R1) and (2.3 ± 0.2) × 10(9) l/mol (rabbit R2). The respective assays show a minimum test midpoint (IC(50) value) of 0.1 ± 0.01 μg/l (R1) and 0.2 ± 0.02 μg/l (R2) and a working range of 0.005 to 150 μg/l (R1) and 0.007 to 200 μg/l (R2), which corresponds to more than four orders of magnitude for both. This is quite remarkable for a competitive immunoassay, which is often believed to have a narrow dynamic range. The limit of detection was calculated to 0.6 ng/l (R1) and 1.5 ng/l (R2), which is up to 100 times improvement in relation to the assay of Zeck et al. (1999) on the basis of a monoclonal antibody. The excellent selectivity of the polyclonal antibodies was comprehensively examined by determining the cross-reactivity to common explosives and other nitroaromatics including nitro musk components. The widely held belief that polyclonal antibodies generally display higher cross-reactivities than monoclonals could be disproved.  相似文献   

13.
A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin‐catalyzed reaction of H2O2 and l ‐tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0/F) and the concentration of selenium within the range of 0.16‐4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se‐enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction of antigen (Ag) and antibody (Ab) with poly diallyldimethylammonium chloride (PDDA) in aqueous solutions has been studied by optical absorption and resonance light‐scattering (RLS) spectroscopies. The formation of the three‐component‐complex is due to aggregates of Ab or Ag with PDDA by electrostatic interaction and aggregates of Ab with Ag by immunoreaction. The influences of some experimental factors, including incubation time, pH value, concentration of PDDA and concentration of Ab, on the aggregation process have also been studied. A linear relationship between the concentration of Ag and the RLS intensity was found. Under the optimal conditions, for a given concentration of Ab (4.6 µg/mL), the enhancement of RLS intensity is in proportion to the concentration of Ag in the range 0.03–0.83 µg/mL. The RLS could, in combination with immunoassay, be a rapid and sensitive detection method for Ag. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040–5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter‐assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Reported in this study are the experimental design and results of an immunosensor for the detection of the explosive, 2,4,6-trinitrotoluene (TNT) in seawater using a reversed-displacement format. This reversed-displacement immunosensor methodology has successfully measured TNT in seawater by direct injection, eliminating the need for preconcentration or pretreatment of samples. A microcolumn containing an Affi-Gel resin derivatized with a 2,4,6-trinitrobenzene (TNB) moiety and a fluorophore-labeled anti-TNT antibody composed the immunoassay reactive chamber. Fluorophore-labeled anti-TNT antibody was incubated with the modified Affi-Gel resin until binding equilibrium was reached. Under a constant flow, samples containing TNT were introduced into the flow stream displacing the fluorophore-labeled TNT antibody. Limits of detection were 2.5ng/mL or part-per-billion (ppb) for TNT in saline buffer and 25ppb in seawater with an analysis time of 10 min. Two anti-TNT antibodies with differing binding affinities were compared in the reversed-displacement assay format, and a correlation between affinity and detection limits was observed. Furthermore, we have demonstrated that the reversed-displacement format can be used to screen seawater samples containing TNT, remains effective after dozens of cycles, and provides significant fluorescence response before regeneration is required.  相似文献   

18.
Yu M  Liu Q  Yi K  Wu L  Tan X 《Journal of cellular biochemistry》2011,112(7):1730-1736
The aim of this study is to investigate the effect of osteopontin (OPN) on functional activity of late endothelial progenitor cells (EPCs). Total mononuclear cells (MNCs) were isolated from human umbilical cord blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin‐coated culture plates. Late EPCs were positive for both 1,1‐dioctadecyl‐3,3,3,3‐tetramethylindocarbocyanine‐labeled acetylated low‐density lipoprotein (DiI‐acLDL) and fluorescein‐isothiocyanate‐conjugated Ulex europaeus agglutinin lectin (UEA‐1). Expression of von Willbrand factor (vWF) and kinase insert domain receptor (KDR) were detected by indirect immunofluorescence staining. Late EPCs of 3–5 passages were treated for 24 h with OPN (to make a series of final concentration: 0.005 µg/ml, 0.01 µg/ml, 0.05 µg/ml, 0.5 µg/ml, 2.5 µg/ml), or vehicle control. The proliferation, migration, and in vitro vasculogenesis activity of late EPCs were assayed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay, modified Boyden chamber assay and an in vitro angiogenesis assay, respectively. Late EPCs adhesion assay was performed by replating cells on fibronectin‐coated plates, and then adherent cells were counted. Incubation with OPN dose‐dependently inhibited the proliferative, adhesive, and in vitro vasculogenesis capacity and increased migratory activity of late EPCs. J. Cell. Biochem. 112: 1730–1736, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
Introduction – Honokiol and magnolol are the active components of Magnolia officinalis, which is a widely used traditional Chinese medicine. Their simultaneous analysis is, therefore, important for the quality control of the product. Objective – To establish a simple, sensitive and rapid electrochemical method for the simultaneous detection of honokiol and magnolol based on the remarkable enhancement effect of acetylene black nanoparticle (AB). Methodology – The AB‐modified electrode was prepared via solvent evaporation. The electrochemical response of honokiol and magnolol was investigated using cyclic voltammetry. The simultaneous detection was performed with differential pulse voltammetry. The method was validated in terms of linearity, sensitivity, precision and accuracy. Results – The linear range for honokiol is 0.5–300 µg/L, and the limit of detection (LOD) is 0.25 µg/L (9.4 × 10?10 mol/L). For magnolol, the linear range is 10–250 µg/L, and the LOD is 5 µg/L (1.88 × 10?8 mol/L). Conclusion – The new method was successfully used to determine honokiol and magnolol in a traditional Chinese medicine called Ageratum liquid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Xiong X  Zhang Q  Nan Y  Gu X 《Luminescence》2012,27(5):371-378
A simple one‐step method is established for plasma determination of ibuprofen and its pharmacokinetic study. The method involves simple sample pre‐treatment by dilution, rapid separation by ultrafiltration (UF) and online sensitive detection by chemiluminescence (CL) based on significant intensity enhancement of ibuprofen on the weak CL of potassium permanganate and sodium sulphite in an acidic system. The calibration curve for ibuprofen is linear in the range 0.1–50.0 µg/mL in rat plasma. Average recoveries of ibuprofen at 0.80, 12.0 and 40.0 µg/mL amounted to 98.0 ± 4.2%, 101.2 ± 3.6% and 99.3 ± 5.4%, respectively. Standard deviations of intra‐ and inter‐day measurement precision and accuracy are within ±10.0%. The detection limit for ibuprofen is 10.0 µg/L in plasma samples. Pharmacokinetic study of ibuprofen by the validated method shows that the mean plasma drug concentration–time course confirms to a classical two‐compartment open model with first‐order absorption. The proposed method will be an alternative for pre‐clinical pharmacokinetic study of ibuprofen and other non‐steroidal anti‐inflammatory drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号