首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The objective was to determine the time spent in the drift by different taxa of stream invertebrates. Most data were obtained from an earlier experimental study to determine the distances travelled by drifting invertebrates of 16 taxa in Wilfin Beck. Experiments were performed at two sites: ‘site 4’ in a stony, fast‐flowing, section of stream, ‘site 3’ in a deeper stream section where macrophytes were abundant. 2. The significant relationship between the mean distance x (m) travelled in the drift and modal water velocity V (m s?1) was described by a power function in the earlier study but, as the power was close to one, a linear relationship has now been found to provide a satisfactory model. The rate of increase in x (m) with increasing V varied considerably between taxa. The mean time [mean t (s)] spent in the drift was estimated by dividing each x (m) by the appropriate V. Mean t (s) for each taxon was usually very constant over a wide range of V at each site (0.10–0.60 m s?1 at site 4, 0.15–0.53 m s?1 at site 3). A simple model estimated the time spent in the drift by different percentages (e.g. 75, 50, 10 and 1%) of the drifting invertebrates. 3. The experimental taxa at site 4 were divided into three groups according to the mean time spent in the drift. Mean t (s) for the five taxa in group 1 (32.8 s) was not significantly different from that obtained in control experiments with a mixed group of dead invertebrates. A similar time (33.0 s) was obtained for the five taxa in group 2, except at water velocities less than 0.2 m s?1 when the mean t (s) decreased to 15–21 s. Mean t (s) was constant for each of the six taxa in group 3, and significantly less than that for groups 1 and 2. Mean values ranged from 28.8 s for Ephemerella ignita to only 9.4 s for Baetis rhodani and Gammarus pulex. All mean values were lower at site 3, presumably because of the dense stands of macrophytes, with mean values of 12.9 s for the five taxa in group 1 (equalling the value for dead invertebrates). Mean values for the six remaining taxa varied from 6.4 s for Simulium spp. to only 4.9 s for Baetis rhodani and 4.8 s for Gammarus pulex. It was concluded from a discussion of this study that the time spent in the drift may provide a useful measure for comparing the downstream dispersal of invertebrates in different streams, and may be a useful addition to models for the drift feeding of salmonids.  相似文献   

2.
A study was conducted to determine if emigration of drifting macroinvertebrates from a stream riffle which was blocked for one week from immigration by upstream colonists significantly reduced the abundance of drift collected from the tail of the riffle. The head of a 9 m long riffle of a 2nd order stream in Maryland (USA) was blocked from incoming drift by a 250 m mesh weir. Upstream immigration of invertebrates into the riffle was largely prevented by a partition placed at the tail of the riffle which held the drift nets. Benthos and drift samples were collected from the riffle prior to weir placement and following its removal, and drift was collected at dusk on each day. No difference in drift or in benthic abundance between the beginning and end of the study was observed. This is largely attributed to recruitment of immature insects (primarily hatching of eggs present at the outset), particularly of Dolophilodes distinctus and species of Tanytarsini, from within the riffle. Results suggest that recruitment of riffle species is of sufficient magnitude to more than compensate for short-term riffle depletion due to drift. Samples of drifting and non-drifting (benthic) animals were held without food for 12 h after collection and mortality within each group was determined. The mortality of drifting animals was three-fold that of benthic animals.  相似文献   

3.
Effects of headwater impoundment and channelization on invertebrate drift   总被引:2,自引:2,他引:0  
The construction of a flood control impoundment on Twitty's Creek added large numbers of organisms of limnetic origin to the stream ecosystem. However, the number of limnetic organisms per unit volume of water decreased rapidly as the distance downstream from the reservoir increased and, during most sampling periods, made up an insignificant portion of the total drift biomass at 7.2 km downstream. Factors favoring the extended downstream drift of limnetic organisms were high stream discharge and low water temperature.Several taxa of benthic organisms had much lower drift rates in the station immediately below the dam than at other stations and several taxa commonly taken at other stations were not captured immediately below the reservoir outfall. One possible explanation is that these organisms may have longer drift recruitment distances than the distance from the reservoir outfall to the sample location.A comparison of drift densities of organisms of benthic origin and benthic standing crop densities in channeled and unchanneled streams revealed that drift densities were higher in channeled streams than in unchanneled streams for most taxa of invertebrates. In addition, channeled streams appeared to have lower benthic standing crops than unchanneled streams for most taxa of invertebrates.In stream sections impacted by either channelization or the Twitty Lake outfall, the energy dynamics of the stream ecosystems were altered by increased density of drifting invertebrates. From the standpoint of increasing food availability to the fish fauna of the stream, these changes would appear to benefit drift feeding species and negatively impact bottom feeding species.  相似文献   

4.
Invertebrate drift in a large, braided New Zealand river   总被引:1,自引:0,他引:1  
1. The spatio-temporal patterns of drifting macroinvertebrates in a large, braided New Zealand river were determined by sampling with drift nets, seasonally, for 1 year. 2. Drift densities were greatest in autumn, and at night in all seasons except winter. A greater proportion of larger animals drifted at night than during the day in all seasons. Mean annual drift densities were ninety-six animals 100m?3 and 47 mg dry weight 100 m?3. 3. There were relatively few taxa in the drift, and the mayfly Deleatidium spp. comprised more than 85% of the drifting aquatic invertebrates in all seasons except autumn. Chironomidae and terrestrial forms were the only other groups to occur at densities of more than one animal 100 m?3 in all seasons. 4. Drift density was positively correlated with benthic density, which in turn was adversely affected by floods, particularly during spring and summer.  相似文献   

5.
1. Two sampling techniques were used to characterize invertebrate communities in eight, low-order streams along an altitudinal gradient in Costa Rica that represents the last continuous tract of primary forest spanning such extremes in elevation (i.e. near sea level to 2900 m a.s.l.) along the Caribbean Slope of Central America. A standard Surber sampler was used to sample invertebrates on the stream bottom, and drift sampling nets were used to sample invertebrates drifting in the stream flow. 2. Sites were established at 30, 50, 700 1800 and 2700 m a.s.l. In one to two streams per site, six Surber samples were collected, and drift was sampled every 3 h over one 24-h period between April and August 1994. All sites were in primary forest, with the exception of the lowest elevation site (30 m) which was located in banana plantations. 3. Both sampling techniques indicated that Diptera (Chironomidae) and Ephemeroptera were the dominant insect groups at all sites. Disturbed streams draining banana plantations were dominated by Chironomidae and had lower taxon richness and diversity than other sites. 4. While data from benthic samples indicated that insects were the major faunal component (> 90%) at all sites, drift samples were dominated by larval shrimps (> 50%) at the 30 m and 50 m sites. 5. Drift periodicity of invertebrates was observed at those sites characterized by predaceous fishes: nocturnal drift densities were higher than diurnal densities at 30, 50 and 700 m a.s.l., however, no periodicity was observed at 1800 and 2700 m a.s.l. where fish were absent. 6. This study shows the importance of measuring invertebrate drift, in addition to directly sampling the benthos. Drift sampling provided data on a major community component (shrimps) of lowland tropical streams, that would have been overlooked using traditional benthic sampling techniques, and in some cases provided additional information on taxon richness. 7. Based on results of the present study, it is recommended that drift sampling be included as a standard complementary tool to benthic sampling in biological assessments (e.g. bioassessment protocols) of tropical streams, which are often characterized by migratory invertebrate species such as shrimps. Drift samples provide critical information on the presence or absence of shrimps and also on the timing and magnitude of their migration which is an important link between many tropical rivers and their estuaries.  相似文献   

6.
Downstream drift of invertebrates in a river in southern Ghana   总被引:11,自引:0,他引:11  
The results of quantitative sampling of the drifting invertebrates from a riffle area in the upper reaches of the Pawmpawm River in the forest of Ghana are presented. The observations were made once a month during 14 months, April 1970 to May 1971, and also on a daily basis for 3 weeks. Changes in numbers and composition of the animals drifting were examined in relation to the volume of water flowing and the current; there appeared to be two distinct drift phenomena, ‘true’ and ‘background’ drift. The animals belonging to each of these two components are discussed in relation to their response to light, to diurnal fluctuations in total drift and to the phases of the moon. There was a peak drift activity after sunset in those animals which are affected by light, e.g. Centroptilum, Austrocaenis, Chironomidae, Simulium. It is concluded that drift may be simply a function of the activity patterns of the insects.  相似文献   

7.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

8.
Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m−3 (meadow) and 26 taxa and a mean of 648 individuals 100 m−3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions.  相似文献   

9.
The drift of organisms and large particulate organic matter >200 μm (LPOM) was investigated during a single receding flood event from 16 to 23 June 1989 in a second order, calcareous, alpine, gravel brook. Starting with the peak level of the hydrograph, which was well above bankfull level, sampling lasted for five days (= 8 sampling dates). Between four and eight replicates were taken at each sampling date. No significant differences (P < 0.05) could be detected in the proportion of the main aquatic taxa (excluding miscellaneous taxa) drifting during above versus below bankfull water levels. However, terrestrial taxa were significantly (P < 0.05) over-represented (23–25% of the total) at flood peak and a small secondary flood peak four days later. In addition, aquatic taxa which normally are scarce in drift samples at the Seebach (e.g. oligochaetes, ostracods) were abundant during the receding main flood event. Above bankfull stage (water level ⩾ 70 cm), animal drift densities were significantly (P < 0.01) and up to 22-times higher (e.g. 45.6 individuals m−3) than during baseflow (e.g. 2.1 individuals m−3). Below bankfull stage, drift densities remain constant, independent of water discharge (Student-Newman-Keuls test; P < 0.01). In LPOM drift, this ratio was nearly 100: 1, with drift values ranging from 1.83 g dry weight m−3 at flood peak to 0.02 g dry weight m−3 at baseflow. Drift densities of animals and LPOM exhibited a positive exponential relationship with water level. Drift rates of anmimals and LPOM ranged from 3200700 individuals and 148.9 kg dry weight per hour at flood peak to 17440 individuals and 0.2 kg dry weight per hour at baseflow. During a single receding flood (water level ⩾ bankfull) significantly more organisms and LPOM were transported than during a whole year at baseflow discharge.  相似文献   

10.
SUMMARY 1. A new method is described for sampling the drift in large rivers continuously and automatically, using equipment based on the marine, continuous plankton sampler of Hardy (1936).
2. Between April and November 1989, about 790 h were sampled continuously, equivalent to a water volume of 2937m3 and the total catch was 527 drifting macroinvertebrates, in forty-nine taxa. Twenty-five of these taxa are recorded in the drift for the first time and twenty-eight of the drifting taxa were present in benthos samples from the Danube.
3. Total drift density varied between 12 and 31 animals per 100m3 of water sampled throughout the year, with a maximum of 31 animals in May, The composition of major faunal groups showed a significant seasonal pattern, with Oligochaeta and Diptera predominant in spring, Crustacea and Insecta in summer and only Crustacea in autumn. The overall density of the macrozoobenthos from October 1986 to December 1987 was about 19360 animals m−2 and the proportion of total benthos animals, drifting at any instant in time, ranged from 0.0026 to 0.0064%.
4. The relationship between drift density day−1 and mean daily discharge was described by a power-function. Total mean drift rate of macroinvertebrates in the Danube was estimated to be 13 600 000 animals per 24 h and the mean drift distance was estimated to vary between about 4 and 31 m, dependent on the animal group and the water velocity.
5. No obvious consistent diel pattern could be established from the continuous samples, and no marked diel rhythm could be detected for Oligochaeta, Diptera larvae and Crustacea.  相似文献   

11.
J. Scullion  A. Sinton 《Hydrobiologia》1983,107(3):261-269
Artificial discharges of water from reservoirs caused a six-fold and three-fold increase in discharge in the R. Tywi and R. Elan respectively but did not significantly alter particle size composition (by weight) and the porosity of the substratum or the organic matter content of fine particles (<0.5 mm). Freshets in both rivers resulted in a consistent, though not significant, reduction in total densities of invertebrates and the densities of many major taxa and abundant species. During the freshet in the R. Elan, maximum concentration and total load of suspended solids were about 11 and 35 times greater than pre-release values respectively while invertebrate drift was dominated by Chironomidae (65%) and Plecoptera (25%). Total numbers and densities of drifting chironomids increased immediately in response to the flow increase; in contrast, numbers and densities of plecopterans increased later, during the night.  相似文献   

12.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

13.
Aggressive interactions, foraging behavior, habitat use and diet were studied in sympatric populations of white-sported char,Salvelinus leucomaenis, and Dolly Varden,Salvelinus malma, in a Japanese mountain stream. Underwater observations on individuals of both species revealed two distinct behavioral regimes: aggressive drift foragers and non-aggressive benthos foragers. Aggressive drift foragers defended partial territories around focal points from which they made forays to capture invertebrates drifting in the water column. Non-aggressive benthos foragers cruised around and beneath cobble in large foraging ranges that overlapped each other. Intra- and interspecific, size-dependent dominance hierarchies were recognized among aggressive drift foragers, whereas non-aggressive benthos foragers showed no such relationships. Terrestrial invertebrates were the most abundant prey in the diets of drift foragers, whereas a very small proportion of the diet of benthos foragers was made up of these taxa. Benthos foragers showed more complex diet composition than drift foragers. These results suggest that non-aggressive benthos foragers may avoid not only interference but also exploitative competition by using alternative foraging tactics. The proportion of drift foragers to benthos foragers among white-spotted char was more than 35 times that among Dolly Varden. The significant difference in the proportion of each species using the two types of foraging strategy results in interspecific food segregation in sympatric populations.  相似文献   

14.
SUMMARY. After considering the large number of grabs described in the literature, seven grabs of weight < 25 kg were chosen for manual operation from a small boat: Van-Veen grab, weighted and unweighted Ponar grabs, Friedinger version of the Petersen grab, Dietz-La Fond mud-snapper, pole-operated Birge-Ekman grab and pole-operated Allan grab. Random samples (number of sampling units n= 10) were taken in a large tank with a known number of 2-mm cylindrical plastic pellets amongst stones of uniform size. Separate experiments were performed with four sizes of stones (model ranges: 2–4 mm, 8–16 mm, 16–32 mm, 32–64 mm). Stratified random samples (n= 10) were taken in rivers and the modal particle sizes at four sites were 0.004–0.06 mm, 0.5–2 mm, 16–64 mm and 64–128 mm. All grabs usually took a representative sample of the substratum at each site with no strong bias towards a particular particle size. The general performance of the Friedinger, Dietz-La Fond and Allan grabs was poor, except on a muddy bottom, with frequent failure to operate, small samples of substratum and a mean depth of penetration < 3 cm in all substrata except mud for the Dietz-La Fond and Allan grabs. The Van-Veen and Birge-Ekman grabs sampled to a mean depth < 3 cm in mud and fine gravel (2–4 mm), but the Birge-Ekman jammed frequently in fine gravel. Both Ponar grabs operated well and sampled to a mean depth ≥ 5 cm in mud and fine gravel, > 3 cm when small stones (8–16 mm) were present and 2 cm (weighted Ponar only) when larger stones (> 16 mm) were present in a gravel bottom. The mean depth was <0.8 cm for all grabs when larger stones (>16 mm) were predominant on the bottom. In the tank experiments with pellets, the efficiencies for the total catches of the Friedinger, Dietz-La Fond and Allan grabs were low with values <45% for fine gravel (2–4 mm), < 22% for small stones (8–16 mm) and <5% for a substratum of larger stones (>16 mm). If 50% is the minimum acceptable efficiency, then the Ponar, Van-Veen and Birge-Ekman grabs were adequate for fine gravel, only the two Ponar grabs were adequate for small stones and no grabs were adequate for sampling a substratum of larger stones (>16 mm). In field trials, the relative abundances of major taxa were similar for most grabs at each site; Friedinger and Dietz-La Fond grabs were the major exceptions. In terms of both mean number of taxa and mean number of invertebrates m?2 the Ponar, Birge-Ekman and Allan grabs performed well on the predominantly muddy substratum at site 1, but only the weighted Ponar grab performed adequately on the predominantly gravel bottom with some large stones (>16 mm) at site 2. All grabs performed badly when larger stones (>16 mm) were predominant on the bottom (sites 3, 4). The relationship between the variances and means of the samples taken with each grab followed a power law for the catches of pellets in tank experiments, and for major taxa and total numbers at each site in field trials. Values of exponents in the power law lay within the range 1.14–2.34. The coefficient of variation was also frequently related to the sample mean and was an unreliable statistic for comparing the precision of grabs.  相似文献   

15.
16.
A study of insect drift was conducted in a small, subtropical Florida stream from December 1971 to December 1972 to describe the seasonal and diel periodicity and to determine factors influencing behavioural drift. Paired samples of 2 h duration beginning 15 min after sunset were taken biweekly, and hourly collections over a 24-h period were made quarterly. Benthic invertebrates were collected on each date from three habitats (riffle, pool and aquatic vegetation) and temperature, dissolved oxygen and current velocity were measured. Drift rates ranged from 100 to 2125 organisms/m2. h (0·03 to 0·49 organisms/m3) and were greatest in winter and early spring; minimal rates occurred in the summer months. The following six taxa, in order of relative abundance, comprised 87% of the drift: Baetis intercalaris, Cheumatopsyche sp., Stenonema exiguum, Chironomidae, Stenelmis fuscata and Simulium sp. Total drift showed no significant correlation with temperature, dissolved oxygen or mean benthic abundance and only slight correlation with current velocity (r=0·34). Stepwise, multiple regression analyses indicated that riffle density and mean size of drifting organisms were important factors influencing the drift rates of B. intercalaris (R=0·67) and S. exiguum (R=0·82); mean size, riffle density and water temperature influenced the drift of Cheumatopsyche sp. (R=0·78). The other taxa of drifting insects showed no significant correlation with the variables measured. Diel (24 h) studies of the major taxa showed marked differences in the periodicity, both within and between taxa, indicating the need for long-term studies with frequent sample intervals in subtropical habitats. A new drift pattern for the family Chironomidae, alternans type, was observed for late instars of Polypedilum halterale.  相似文献   

17.
“Drifting” is known to subject aquatic invertebrates to intense predation by drift feeding fish. Consequently, interspecific variations in drifting behaviour could lead to differences in predation pressure between coexisting prey species. Predation being an important factor determining the success of invaders, differences in drift patterns could advantage either native or exotic invertebrates through differential predation by native fish predators. The exotic freshwater amphipod (Gammarus roeseli) has now largely colonized Western Europe where it is often found in sympatry with a native species (Gammarus pulex). Here we documented interspecific differences in drifting behaviour that might have favored the invader’s success through differential predation. Benthic and drifting amphipods were sampled three times at the same site to compare the proportion of each species within and between sample types (benthos or drift) across time. Compared with the benthos, where the invader (G. roeseli) was significantly less abundant than the native (G. pulex), G. roeseli was proportionally overrepresented in the drift but displayed a very different drifting pattern. While G. pulex drift rates remained roughly constant over a 24 h period, G. roeseli showed a marked diel periodicity with low diurnal and high nocturnal drift rates. Such drifting behaviour could procure this species with a competitive advantage regarding predation as most drift feeding fish are diurnal. As a result, the native appears more disadvantaged with respect to drift. This may partly explain the ability of G. roeseli to coexist with G. pulex in a habitat more suitable to the native.  相似文献   

18.
19.
Invertebrate drift in the Snake River,Wyoming   总被引:9,自引:9,他引:0  
Kroger  Richard L. 《Hydrobiologia》1974,44(4):369-380
Drifting invertebrates were collected hourly during 24-hour sampling periods at two stations in the Snake River. The greatest number of invertebrates was collected on 8 and 15 July 1966 at station 1 between 9:00 p. m. and 12 midnight, then the numbers gradually decreased until the low daylight drift rate was reached at dawn. On 26 and 27 August 1966 at station 2, the diel periodicities of drifting invertebrates were different than at station 1. Many species increased their drift rates slightly during the first hour of darkness but also exhibited a higher drift peak later in the night.Drift indices for 25 taxonomic groups of invertebrates were established from the ratio of standing crop, estimated from Surber samples, to numbers drifting. There was more apparent correlation between species life cycle stage and numbers drifting than between species abundance and numbers drifting.
Zusammenfassung Dahintreibende, wirbellose Tiere wurden während 24-stündigen Untersuchungsperioden stündlich an zwei Stationen im Snake River gesammelt. Die grössten Anzahlen von wirbellosen Tieren wurden auf Station 1 am 8. und 15. Juli 1966 zwischen 21 und 24 Uhr gefunden. Danach verminderten sich die Zahlen allmählich bis sie bei Morgendämmerung die niedrigsten Werte des Tagesdrifts erreichten. Am 26. und 27. August 1966 waren die täglichen periodischen Zyklen der treibenden Invertebraten auf Station 2 ganz anders als die auf Station 1. Viele Arten erhöhten ihre Driftgeschwindigkeit etwas in der ersten Stunde der Dunkelheit und hatten ausserdem noch einen Höchstdrift später in der Nacht.Ein Driftindex für 25 taxonomische Gruppen wirbelloser Tiere wurde nach dem Verhältnis von Standing Crop zur Anzahl dahintreibender Tiere aufgestellt, berechnet auf Grund von Surber Proben. Es bestand eine grössere Wechselbeziehung zwischen der Stufe im Lebenszyklus der Arten und der Anzahl der Treibenden, als zwischen dem Artenquantum und der Anzahl der Treibenden.


The research was financed by the U.S. National Park Service and was conducted at Jackson Hole Biological Research Station, Moran, Wyoming. The results were presented as part of a M.S. thesis to the Department of Zoology and Physiology, University of Wyoming in June 1967. Dr. Thomas F. Waters encouraged publication of the thesis drift data.  相似文献   

20.
The effect of electroshocking and walking on the substrate on macroinvertebrate drift was evaluated in three streams located in southwestern Oregon, USA. A randomized block experimental design was used to determine treatment (electroshocking and walking, electroshocking-only, walking-only) and drift distance effects on the number, biomass, and length of macroinvertebrates drifting up to 30 m downstream. In all streams, electroshocking caused significantly (p < 0.05) greater number of macroinvertebrates to drift compared to merely walking on the substrate. The differences among treatments decreased the farther downstream the macroinvertebrates drifted. No significant difference (p > 0.05) was observed in mean biomass between electroshocking and walking on the substrate among the drift distances. The longest macroinvertebrates were collected from the electroshocking treatment at the shortest drift distance (2.5 m) in all of the streams. The length of macroinvertebrates collected between electroshocking and walking on the substrate were similar at drift distances of 10 m and greater and represented predominately the smaller, poor swimming taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号