首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We isolated a novel gene for cyclophilin (CyP) first identified as an intracellular target of the immunosuppressant cyclosporin A and also known to have peptidyl-prolyl cis-trans isomerase (PPIase) activity, named ATCYP5 from Arabidopsis thaliana. ATCYP5 encoded a polypeptide with 201 amino acids with a putative ER-targeting signal sequence at its N-terminal, but without the typical ER-retention signal in its C-terminal. In addition, ATCYP5 protein contained a seven amino-acid long sequence which has been found previously only in cytosolic CyPs from plants. The synthetic mutant green fluorescent protein (sGFP; S65T) was fused to the N-terminal part of ATCYP5, and expressed in tobacco BY-2 cells. The fluorescence derived from the fusion protein was detected mainly around the nucleus, indicating translocation into ER. ATCYP5 was expressed mainly in young stems especially in the apical region and weakly in leaves and roots.  相似文献   

2.
S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.  相似文献   

3.
In plants, the nuclear envelope (NE) is one of the least characterized cellular structures. In particular, little is known about its dynamics during the cell cycle. This is due to the absence of specific markers for in vivo studies. To generate such an in vivo marker, the suitability of the human lamin B receptor (LBR) was tested. When the first 238 amino acids of the LBR, fused to the green fluorescent protein (GFP), were expressed in tobacco plants, fluorescence accumulated only at the NE of leaf epidermal cells. This was confirmed by electron microscopy. The protein was shown to be membrane-integral by phase separation. Distribution of fluorescence was compared with two ER markers, GFP-calnexin and GFP-HDEL. While co-localization of all three markers was noted at the NE, only LBR-GFP was specific to the NE, while the other two also showed fluorescence of the cortical ER. These results suggest that common targeting mechanisms to those in animals and fungi exist in plants to direct and locate proteins to the NE. This chimaeric construct is the first available fluorescent integral membrane protein marker to be targeted exclusively to the plant NE and it provides a novel opportunity to investigate the dynamics of this membrane system in vivo. With it, the cell cycle was followed in tobacco BY-2 cells stably expressing the fusion protein. The interphase labelling of the NE altered in metaphase into an ER-like meshwork, suggesting the dispersal of the NE to ER as in animal cells. Finally, the meshwork of fluorescent membranes was lost and new fluorescent NE formed around the daughter nuclei.  相似文献   

4.
The organization of microtubule arrays in the plant cell cortex involves interactions with the plasma membrane, presumably through protein bridges. We have used immunochemistry and monoclonal antibody 6G5 against a candidate bridge protein, a 90-kD tubulin binding protein (p90) from tobacco BY-2 membranes, to characterize the protein and isolate the corresponding gene. Screening an Arabidopsis cDNA expression library with the antibody 6G5 produced a partial clone encoding phospholipase D (PLD), and a full-length gene was obtained by sequencing a corresponding expressed sequence tag clone. The predicted protein of 857 amino acids contains the active sites of a phospholipid-metabolizing enzyme and a Ca(2+)-dependent lipid binding domain and is identical to Arabidopsis PLD delta. Two amino acid sequences obtained by Edman degradation of the tobacco p90 are identical to corresponding segments of a PLD sequence from tobacco. Moreover, immunoprecipitation using the antibody 6G5 and tobacco BY-2 protein extracts gave significant PLD activity, and PLD activity of tobacco BY-2 membrane proteins was enriched 6.7-fold by tubulin-affinity chromatography. In a cosedimentation assay, p90 bound and decorated microtubules. In immunofluorescence microscopy of intact tobacco BY-2 cells or lysed protoplasts, p90 colocalized with cortical microtubules, and taxol-induced microtubule bundling was accompanied by corresponding reorganization of p90. Labeling of p90 remained along the plasma membrane when microtubules were depolymerized, although detergent extraction abolished the labeling. Therefore, p90 is a specialized PLD that associates with membranes and microtubules, possibly conveying hormonal and environmental signals to the microtubule cytoskeleton.  相似文献   

5.
Following endoplasmic reticulum (ER) stress that prevents correct folding or assembly of ER proteins, at least three responses occur to maintain cell homeostasis: induction of chaperones, attenuation of protein synthesis, and enhancement of lipid synthesis. Transducers that transmit ER stress to the nucleus have already been identified in yeast and mammals. We report here isolation of a cDNA, OsIre1, from rice encoding a putative homolog of Ire1p, a yeast transducer of ER stress. OsIre1 encodes a polypeptide consisting of 893 amino acids, in which two hydrophobic stretches are present in the amino-terminal (N-terminal) and middle regions, possibly serving as a signal peptide and a transmembrane domain, respectively. The carboxyl-terminal (C-terminal) domain was found to possess serine/threonine protein kinase and ribonuclease-like domains showing high similarities with regions in Ire1 homologs from other organisms. A fusion protein of OsIre1 and green fluorescent protein (GFP) expressed in tobacco BY2 cells could be demonstrated to localize to the ER and the N-terminal domain of OsIre1 could substitute for yeast Ire1p in yeast cells. When produced in bacteria as a fusion protein, the C-terminal region of OsIre1 showed autophosphorylation activity. These results thus indicate that OsIre1 encodes a putative plant transducer of ER stress.  相似文献   

6.
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.  相似文献   

7.
We previously reported that rat and mouse neutral ceramidases were mainly localized to plasma membranes as a type II integral membrane protein and partly detached from the cells via processing of the N-terminal/anchor sequence when expressed in HEK293 cells [M. Tani, H. Iida, M. Ito, O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein, J. Biol. Chem. 278 (2003) 10523-10530]. In contrast, the human homologue was exclusively detected in mitochondria when expressed in HEK293 and MCF7 cells as a fusion protein with green fluorescent protein at the N-terminal of the enzyme [S.E. Bawab, P. Roddy, T. Quian, A. Bielawska, J.J. Lemasters, Y.A. Hannun, Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513]. Given this discrepancy, we decided to clone the neutral ceramidase from human kidney cDNA and re-examine the intracellular localization of the enzyme when expressed in HEK293 cells. The putative amino acid sequence of the newly cloned enzyme was identical to that reported for human neutral ceramidase except at the N-terminal; the new protein was 19 amino acids longer at the N-terminal. We found that the putative full-length human neutral ceramidase was transported to plasma membranes, but not to mitochondria, possibly via a classical ER/Golgi pathway and localized mainly in plasma membranes when expressed in HEK293 cells. The N-terminal-truncated mutant, previously reported as a human mitochondrial ceramidase, was also weakly expressed in HEK293 cells but mainly released into the medium possibly due to the insufficient signal/anchor sequence.  相似文献   

8.
Prolamins, the main storage proteins of wheat seeds, are synthesized and retained in the endoplasmic reticulum (ER) of the endosperm cells, where they accumulate in protein bodies (PBs) and are then exported to the storage vacuole. The mechanisms leading to these events are unresolved. To investigate this unconventional trafficking pathway, wheat γ-gliadin and its isolated repeated N-terminal and cysteine-rich C-terminal domains were fused to fluorescent proteins and expressed in tobacco leaf epidermal cells. The results indicated that γ-gliadin and both isolated domains were able to be retained and accumulated as protein body-like structures (PBLS) in the ER, suggesting that tandem repeats are not the only sequence involved in γ-gliadin ER retention and PBLS formation. The high actin-dependent mobility of γ-gliadin PBLS is also reported, and it is demonstrated that most of them do not co-localize with Golgi body or pre-vacuolar compartment markers. Both γ-gliadin domains are found in the same PBLS when co-expressed, which is most probably due to their ability to interact with each other, as indicated by the yeast two-hybrid and FRET-FLIM experiments. Moreover, when stably expressed in BY-2 cells, green fluorescent protein (GFP) fusions to γ-gliadin and its isolated domains were retained in the ER for several days before being exported to the vacuole in a Golgi-dependent manner, and degraded, leading to the release of the GFP 'core'. Taken together, the results show that tobacco cells are a convenient model to study the atypical wheat prolamin trafficking with fluorescent protein fusions.  相似文献   

9.
10.
We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.  相似文献   

11.
Laccase (Lcc) is a lignin-degrading enzyme produced by white-rot fungi and has been the subject of much interest in the field of bioremediation due to its ability to oxidize phenolic compounds. In this report, we describe the isolation and characterization of lcc1, a novel gene of Lentinula edodes that encodes Lcc1, and demonstrate that recombinant Lcc1 is expressed in an active, secreted form in tobacco BY-2 cells in culture. The open reading frame of lcc1 was 1,557 base pairs in length and encoded a putative protein of 518 amino acids. We introduced a chimeric form of lcc1 (CaMV35Sp:clcc1) into tobacco BY-2 cells and obtained several stable clcc1 transformants that expressed active Lcc1. Lcc1 activity in BY-2 culture media was higher than in cellular extracts, which indicated that recombinant Lcc1 was produced in a secreted form. Recombinant Lcc1 had a smaller apparent molecular weight and exhibited a different pattern of posttranslational modification than Lcc1 purified from L. edodes. The substrate specificity of purified recombinant Lcc1 was similar to L. edodes Lcc1, and both enzymes were able to decolorize the same set of dyes. These results suggest that heterologous expression of fungal Lcc1 in BY-2 cells will be a valuable tool for the production of sufficient quantities of active laccase for bioremediation.  相似文献   

12.
Oxysterol-binding protein (OSBP) is 1 of 12 related proteins implicated in the regulation of vesicle transport and sterol homeostasis. A yeast two-hybrid screen using full-length OSBP as bait was undertaken to identify partner proteins that would provide clues to the function of OSBP. This resulted in the cloning of vesicle-associated membrane protein-associated protein-A (VAP-A), a syntaxin-like protein implicated in endoplasmic reticulum (ER)/Golgi vesicle transport, and phospholipid regulation in mammalian cells and yeast, respectively. By using a combination of yeast two-hybrid, glutathione S-transferase pull-down and immunoprecipitation experiments, the VAP-A-binding region in OSBP was localized to amino acids 351-442. This region did not include the pleckstrin homology (PH) domain but overlapped with the N terminus of the oxysterol binding and OSBP homology domains. C- and N-terminal truncations or deletions of VAP prevented interaction with OSBP but did not affect VAP multimerization. Although the OSBP PH domain was not necessary for VAP-A binding in vitro, interaction with VAP-A was enhanced in cells by mutation of the conserved PH domain tryptophan (OSBP W174A) or deletion of the C-terminal half of the PH domain (OSBP Delta 132-182). OSBP W174A retained oxysterol binding activity, association with phospholipid vesicles via the PH domain, and localized with VAP in unusual ER-associated structures. At 40 degrees C, misfolded ts045-vesicular stomatitis virus G protein fused to green fluorescent protein was co-localized with VAP-A/OSBP W174A structures on the ER but was exported to the Golgi when folded normally at 32 degrees C. A fluorescent ceramide analogue also accumulated in these ER inclusions, and export to the Golgi was partially inhibited as indicated by decreased Golgi staining and a 30% reduction in sphingomyelin synthesis. These studies show that OSBP binding to the ER and Golgi apparatus is regulated by its PH domain and VAP interactions, and the complex is involved at a stage of protein and ceramide transport from the ER.  相似文献   

13.
Concanavalin A (ConA) is a well characterized and extensively used lectin accumulated in the protein bodies of jack bean cotyledons. ConA is synthesized as an inactive precursor proConA. The maturation of inactive proConA into biologically active ConA is a complex process including the removal of an internal glycopeptide and a C-terminal propeptide (CTPP), followed by a head-to-tail ligation of the two largest polypeptides. The cDNA encoding proConA was cloned and expressed in tobacco BY-2 cells. ProConA was slowly transported to the vacuole where its maturation into ConA was similar to that in jack bean cotyledons, apart from an incomplete final ligation. To investigate the role of the nine amino acid CTPP, a truncated form lacking the propeptide (proConADelta9) was expressed in BY-2 cells. In contrast to proConA, proConADelta9 was rapidly chased out of the endoplasmic reticulum (ER) and secreted into the culture medium. The CTPP was then fused to the C-terminal end of a secreted form of green fluorescent protein (secGFP). When expressed in tobacco BY-2 cells and leaf protoplasts, the chimaeric protein was located in the vacuole whereas secGFP was located in the culture medium and in the vacuole. Altogether, our results show we have isolated a new C-terminal vacuolar sorting determinant.  相似文献   

14.
Abstract: The oxidative burst is an integral component of plant resistance to pathogens. There is accumulating evidence that the oxidative burst is catalyzed by an enzyme with similarities to the phagocyte NADPH oxidase. We have cloned a full length homolog of the gp91 ( phox ) subunit of the plasma membrane NADPH oxidase complex from tomato named LeRBOM. The predicted protein contains 989 amino acids. The large N-terminal domain contains two EF hand calcium binding motifs and one conserved glycosylation site. Six putative membrane spans are present in the C-terminal half of the predicted protein. Extensive homology with the human gp91 ( phox ) subunit was found including conservation of amino acid residues important for heme coordination and substrate binding. We have also isolated partial genomic clones from tomato and from the aquatic plant Potamogeton crispus. These species serve as models for studies of signal transduction leading to NADPH oxidase activation. In tomato, LeRBOH1 expression was too low to be detected on Northern blots. RT-PCR indicated that LeRBOH1 was expressed in all tissues tested.  相似文献   

15.
16.
Kinectin is a kinesin-binding protein (Toyoshima et al., 1992) that is required for kinesin-based motility (Kumar et al., 1995). A kinectin cDNA clone containing a 4.7-kilobase insert was isolated from an embryonic chick brain cDNA library by immunoscreening with a panel of monoclonal antibodies. The cDNA contained an open reading frame of 1364 amino acids encoding a protein of 156 kDa. A bacterially expressed product of the full length cDNA bound purified kinesin. Transient expression in CV-1 cells gave an endoplasmic reticulum distribution that depended upon the N-terminal domain. Analysis of the predicted amino acid sequence indicated a highly hydrophobic near N-terminal stretch of 28 amino acids and a large portion (326-1248) of predicted alpha helical coiled coils. The 30-kDa fragment containing the N-terminal hydrophobic region was produced by cell-free in vitro translation and found to assemble with canine pancreas rough microsomes. Cleavage of the N terminus was not observed confirming its role as a potential transmembrane domain. Thus, the kinectin cDNA encodes a cytoplasmic-oriented integral membrane protein that binds kinesin and is likely to be a coiled-coil dimer.  相似文献   

17.
In higher plants, ascorbate peroxidase (APX; EC 1.11.1.11), the major H2O2-scavenging enzyme, occurs in several distinct isoenzymes that are localized in cytosol and various cell organelles. Here, we have purified and characterized an APX from the soluble fraction of plastids of non-photosynthetic tobacco BY-2 cells. The plastidic APX was a monomer with a molecular weight of 34 000. The enzymatic properties of the plastidic APX, including the rapid inactivation by H2O2 in ascorbate-depleted medium, were highly comparable with those of the chloroplastic stromal APX of spinach and tea leaves. However, the other chloroplastic APX isoenzyme, the thylakoid-membrane bound APX, was not detected in the plastids of the BY-2 cells. The N-terminal amino acid sequence of the plastidic APX was completely identical with the deduced amino acid sequence of a previously identified cDNA sequence of tobacco chloroplastic APX. When a green fluorescence protein gene tagged with the chloroplast-targeting signal sequence of APX was expressed in the BY-2 cells, the fluorescence protein exclusively localized into plastids, and not into mitochondria. We conclude that plastidic APX in non-photosynthetic tissues is the same as the chloroplastic APX that occurs in leaves.  相似文献   

18.
19.
The peroxisomal isoform of ascorbate peroxidase (APX) is a novel membrane isoform that functions in the regeneration of NAD(+) and protection against toxic reactive oxygen species. The intracellular localization and sorting of peroxisomal APX were examined both in vivo and in vitro. Epitope-tagged peroxisomal APX, which was expressed transiently in tobacco BY-2 cells, localized to a reticular/circular network that resembled endoplasmic reticulum (ER; 3,3'-dihexyloxacarbocyanine iodide-stained membranes) and to peroxisomes. The reticular network did not colocalize with other organelle marker proteins, including three ER reticuloplasmins. However, in vitro, peroxisomal APX inserted post-translationally into the ER but not into other purified organelle membranes (including peroxisomal membranes). Insertion into the ER depended on the presence of molecular chaperones and ATP. These results suggest that regions of the ER serve as a possible intermediate in the sorting pathway of peroxisomal APX. Insight into this hypothesis was obtained from in vivo experiments with brefeldin A (BFA), a toxin that blocks vesicle-mediated protein export from ER. A transiently expressed chloramphenicol acetyltransferase-peroxisomal APX (CAT-pAPX) fusion protein accumulated only in the reticular/circular network in BFA-treated cells; after subsequent removal of BFA from these cells, the CAT-pAPX was distributed to preexisting peroxisomes. Thus, plant peroxisomal APX, a representative enzymatic peroxisomal membrane protein, is sorted to peroxisomes through an indirect pathway involving a preperoxisomal compartment with characteristics of a distinct subdomain of the ER, possibly a peroxisomal ER subdomain.  相似文献   

20.
Microsomal epoxide hydrolase (mEH) is a bifunctional membrane protein that plays a central role in the metabolism of xenobiotics and in the hepatocyte uptake of bile acids. Numerous studies have established that this protein is expressed both in the endoplasmic reticulum and at the sinusoidal plasma membrane. Preliminary evidence has suggested that mEH is expressed in the endoplasmic reticulum (ER) membrane with two distinct topological orientations. To further characterize the membrane topology and targeting of this protein, an N-glycosylation site was engineered into mEH to serve as a topological probe for the elucidation of the cellular location of mEH domains. The cDNAs for mEH and this mEH derivative (mEHg) were then expressed in vitro and in COS-7 cells. Analysis of total expressed protein in these systems indicated that mEHg was largely unglycosylated, suggesting that expression in the ER was primarily of a type I orientation (Ccyt/Nexo). However, analysis, by biotin/avidin labeling procedures, of mEHg expressed at the surface of transfected COS-7 cells, showed it to be fully glycosylated, indicating that the topological form targeted to this site originally had a type II orientation (Cexo/Ncyt) in the ER. The surface expression of mEH was also confirmed by confocal fluorescence scanning microscopy. The sensitivity of mEH topology to the charge at the N-terminal domain was demonstrated by altering the net charge over a range of 0 to +3. The introduction of one positive charge led to a significant inversion in mEH topology based on glycosylation site analysis. A truncated form of mEH lacking the N-terminal hydrophobic transmembrane domain was also detected on the extracellular surface of transfected COS-7 cells, demonstrating the existence of at least one additional transmembrane segment. These results suggest that mEH may be integrated into the membrane with multiple transmembrane domains and is inserted into the ER membrane with two topological orientations, one of which is targeted to the plasma membrane where it mediates bile acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号