首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.A gradual degenerative loss of skeletal muscle mass and function is one of the most consistent hallmarks of normal aging. When it reaches defined thresholds, this condition is referred to as sarcopenia (1, 2), and can be associated with disability, poor quality of life, frailty, and increased mortality (3). Aging impacts the morphology, function and biochemical properties of skeletal muscle, but the mechanisms leading to the changes in muscle tissue remain unclear.Proteomics links the muscle functional changes with the protein expression pattern. Several proteomic approaches have already been used to study sarcopenia. Protein profiling of whole tissue homogenates has been performed using two-dimensional gel electrophoresis (2DGE)1 and mass spectrometry to identify the proteins differentially expressed during aging in rat (46) and human muscle (7, 8). Other studies have focused on specific fractions such as mitochondrial proteins (9), phosphoproteins (10), glycoproteins (11), basic proteins (12), or calpain interacting proteins (13). The few proteomic studies available on human skeletal muscle are mostly based on the 2DGE approach, which implies focusing on a specific pH range (7, 8). Despite its power of high-resolution, 2DGE presents a limited dynamic range and scarcely resolves low abundance regulatory proteins, hydrophobic proteins, and proteins with extreme pI and/or Mr (14).To circumvent these limitations, we propose in the present study to apply a label-free protein profiling based on a shotgun proteomics approach. This technique permits to identify proteins in a complex mixture after trypsin hydrolysis, using a combination of high performance liquid chromatography and mass spectrometry. In a shotgun analysis previously performed on whole muscle extracts, the major isoforms of myosin heavy-chain comprise ∼42% of the total spectra (15). Because these major isoforms may hamper identification of other proteins, we decided to precipitate myofibrils at low ionic strength (16, 17) and to focus on the soluble fraction. In this paper, we present the analytical steps of label-free quantitation, which resulted in the identification and quantitation of 255 muscle proteins common to all ten individuals. The comparison of protein profiling between mature and older women highlighted 35 differentially expressed proteins during aging, 25 proteins that have not previously been related to muscle aging. The functional interactions network linking these proteins showed that the two main biological processes were represented by proteins involved in energy metabolism and contractile proteins.  相似文献   

2.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   

3.
Proteomic studies in plants   总被引:1,自引:0,他引:1  
Proteomics is a leading technology for the high-throughput analysis of proteins on a genome-wide scale. With the completion of genome sequencing projects and the development of analytical methods for protein characterization, proteomics has become a major field of functional genomics. The initial objective of proteomics was the large-scale identification of all protein species in a cell or tissue. The applications are currently being extended to analyze various functional aspects of proteins such as post-translational modifications, protein-protein interactions, activities and structures. Whereas the proteomics research is quite advanced in animals and yeast as well as Escherichia coli, plant proteomics is only at the initial phase. Major studies of plant proteomics have been reported on subcellular proteomes and protein complexes (e.g. proteins in the plasma membranes, chloroplasts, mitochondria and nuclei). Here several plant proteomics studies will be presented, followed by a recent work using multidimensional protein identification technology (MudPIT).  相似文献   

4.
5.
6.
Introduction: Adrenal tumor is a relatively common tumor. The discrimination between adrenal cortical adenoma (ACA) and adrenal cortical carcinoma (ACC) is crucial as these two diseases have distinct prognosis. ACA is a benign tumor curable by surgical excision, while the prognosis of ACC is extremely poor, with a 5-year mortality of 75–90%. Therefore, previous proteomic studies focused on markers allowing the differentiation between ACA and ACC.

Areas covered: Several proteomic approaches based on the analysis of various samples such as human tissues, urine, and cell lines. In this review, we focused on proteomic studies performed to improve adrenal tumor diagnosis and identify ACC therapeutic targets.

Expert commentary: The rapid development of cancer genomics provided a lot of information, which affects functional proteomics. In practice, differentially expressed proteins between ACA and ACC have been suggested in several proteomic studies and had a biologic implication in ACC.  相似文献   


7.
Proteomics: a link between genomics,genetics and physiology   总被引:16,自引:0,他引:16  
Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant biology. In the study of pleiotropic effects of mutants and in the analysis of responses to hormones and to environmental changes, the identification of involved metabolic pathways can be deduced from the function of affected proteins. In molecular quantitative genetics, proteomics can be used to map translated genes and loci controlling their expression, which can be used to identify proteins accounting for the variation of complex phenotypic traits. Linking gene expression to cell metabolism on the one hand and to genetic maps on the other, proteomics is a central tool for functional genomics.  相似文献   

8.
9.
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.  相似文献   

10.
Angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) limit left ventricular (LV) dysfunction and necrosis after reperfused myocardial infarction (RMI) and proteomics can detect changes in protein levels after injury. We applied proteomics to detect changes in levels of specific protein in the ischemic zone (IZ) and non-ischemic zone (NIZ) of dog hearts after in vivo RMI (90 min of anterior ischemia; 120 min of reperfusion) and treatment with intravenous vehicle (control) and the ARBs valsartan or irbesartan (10 mg/kg) over 30 min before RMI. We also assessed LV function, infarction and apoptosis. Both ARBs limited the RMI-induced LV dysfunction, infarct size and apoptosis. Proteomics detected differential expression of 5 randomly selected proteins in the IZ compared to the NIZ after RMI: decrease in subunit of ATP synthase isoform precursor (consistent with increased conversion to subunit under metabolic stress), M chain creatine kinase (consistent with cellular damage) and ventricular myosin light chain-1 (consistent with structural damage and decreased contractility); and increase in NAD+-isocitrate dehydrogenase (ICDH) and subunit and ATP synthase D chain (mitochondrial, consistent with metabolic dysfunction). Importantly, changes in NAD+-ICDH and ATP synthase D chain were reversed by ARB therapy. Thus, proteomics can detect regional changes in metabolic, contractile, and structural proteins after RMI and several of these proteins are favorably modified by ARBs, suggesting that they may be novel therapeutic targets. (Mol Cell Biochem 263: 179–188, 2004)  相似文献   

11.
12.
13.
Introduction: The clinical evaluation of neuromuscular symptoms often includes the assessment of altered blood proteins or changed enzyme activities. However, the blood concentration of many muscle-derived serum markers is not specific for different neuromuscular disorders and also shows alterations in the course of these diseases. Thus, the establishment of more reliable biomarker signatures for improved muscle diagnostics is required.

Areas covered: To address the lack of muscle disease-specific marker molecules, mass spectrometry-based proteomics was applied to the systematic identification and biochemical characterization of new serum biomarker candidates. This article outlines serum proteomics in relation to neuromuscular disorders and reviews the bioanalytical results from recent proteomic profiling studies of representative neuromuscular disorders, including motor neuron disease, muscular dystrophies and sarcopenia of old age. Pathophysiological changes in the skeletal muscle proteome are reflected by serum alterations in a variety of sarcomeric proteins, metabolic enzymes and signaling proteins.

Expert commentary: Based on the proteomic identification of actively secreted or passively released skeletal muscle proteins following pathophysiological insults, new biomarker candidates can now be used to develop liquid biopsy procedures for superior diagnostic approaches, design novel prognostic tools and establish more reliable methods for the systematic evaluation of experimental therapies to treat neuromuscular disease.  相似文献   


14.
15.
The fluorescence robot imaging technology multi-epitope-ligand-cartography/toponome imaging system has revolutionized the field of proteomics/functional genomics, because it enables the investigator to locate and decipher functional protein networks, the toponome, consisting of hundreds of different proteins in a single cell or tissue section. The technology has been proven to solve key problems in biology and therapy research. It has uncovered a new cellular transdifferentiation mechanism of vascular cells giving rise to myogenic cells in situ and in vivo; a finding that has led to efficient cell therapy models of muscle disorders, and discovered a new target protein in sporadic amyotrophic lateral sclerosis by hierarchical protein network analysis, a finding that has been confirmed by a mouse knockout model. A lead target protein in tumor cells that controls cell polarization as a mechanism that is fundamental for migration and metastasis formation has also been uncovered, and new functional territories in the CNS defined by high-dimensional synaptic protein clusters have been unveiled. The technology can be effectively interlocked with genomics and proteomics to optimize time-to-market and the overall attrition rate of new drugs. This review outlines major proofs of principle with an emphasis on neurotoponomics.  相似文献   

16.
Introduction: Distinct subtypes of contractile fibres are highly diverse in their proteomic profile and greatly adaptable to physiological or pathological challenges. A striking biochemical feature of heterogeneous skeletal muscle tissues is the presence of a considerable number of extremely large protein species, which often present a bioanalytical challenge for the systematic separation and identification of muscle proteomes during large-scale screening surveys.

Areas covered: This review outlines the proteomic characterization of skeletal muscles with a special focus on giant proteins of the sarcomere, the cytoskeleton and the sarcoplasmic reticulum. This includes an overview of the involvement of large muscle proteins, such as titin, nebulin, obscurin, plectin, dystrophin and the ryanodine receptor calcium release channel, during normal muscle functioning, swift adaptations to changed physiological demands and changes in relation to pathobiochemical insults.

Expert commentary: The proteomic screening and characterization of total muscle extracts and various subcellular fractions has confirmed the critical role of large skeletal muscle proteins in the regulation of ion homeostasis, the maintenance of contraction-relaxation cycles and fibre elasticity, and the stabilisation of supramolecular complexes of the muscle periphery and cytoskeletal networks of contractile fibres. These findings will be helpful for the future functional systems analysis of giant muscle proteins.  相似文献   


17.
Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Firstly, we applied quantitative proteomics to determine global cell cycle changes in the profiles of MAPs in human and Drosophila cells. This uncovered a wide range of cell cycle regulations of MAPs previously unidentified. Secondly, systematic studies of human kinesins highlighted an overlooked aspect of kinesins: most mitotic kinesins suppress their affinity to microtubules or reduce their protein levels in interphase in combination with nuclear localization. Thirdly, in-depth analysis of a novel Drosophila MAP (Mink) revealed that the suppression of the microtubule affinity of this mitotic MAP in combination with nuclear localization is essential for microtubule organization in interphase, and phosphorylation of Mink is needed for kinetochore-microtubule attachment in mitosis. Thus, this first comprehensive analysis of MAP regulation for the interphase/mitosis transition advances our understanding of kinesin biology and reveals the prevalence and importance of multi-layered MAP regulation.Microtubules are universally found in eukaryotic cells and are involved in diverse processes including cell division, polarity, and intracellular transport. A striking feature of microtubules is that they change their dynamics and organization depending on cellular contexts. Proteins that interact with microtubules, collectively called microtubule-associated proteins (MAPs),1 are considered to play a major role in determining microtubule dynamics and organization.Although MAPs in general lack recognizable sequence motifs, many MAPs from various sources have been successfully identified by means of biochemical purification followed by mass spectrometry (14). However, functional analysis is more problematic, as hundreds of MAPs can interact with microtubules. In addition, multiple MAPs have functional redundancy (57), making their biological function often difficult to determine, which results in their importance being grossly underappreciated. Furthermore, it is challenging to understand how MAPs collectively determine the diverse organization and dynamics of microtubules in different cells.One of the most dramatic changes of microtubule organization is found at the transition from interphase to mitosis. During mitosis, microtubules are much more dynamic and are organized into a dense bipolar structure, the spindle, whereas microtubules in interphase are less dynamic and are arranged in a radial array. This transition is rapid and is thought to reflect mainly a change in the activities of both motor and nonmotor MAPs (8); however, we do not have sufficient knowledge of how MAPs themselves are regulated. It is crucial to identify and understand the regulation of MAPs whose activities change in the cell cycle, and how they collectively change microtubule dynamics and organization. Misregulation of such MAPs could interfere with chromosome segregation or cell polarity and potentially contribute to oncogenesis (9). Also, this misregulation can be used to elucidate important functions that are masked due to functional redundancy.We hypothesize that some proteins bind to microtubules only during mitosis and are released from microtubules in interphase. The binding of such proteins to spindle microtubules in mitosis could collectively trigger the formation of the functional spindle, and, of equal importance, removing such proteins from microtubules at the mitotic exit could be essential for disassembling the spindle and proper organization and/or function of interphase microtubules. Conversely, some proteins may bind to microtubules specifically during interphase. No studies have been reported that systematically identify proteins whose microtubule-binding activities change between interphase and mitosis.Here we report a combined approach integrating three levels of analyses to gain insights into how MAPs are regulated as a whole to drive microtubule reorganization at the transition between interphase and mitosis. Firstly, we applied proteomics to determine the quantitative change of the global MAP profile between mitosis and interphase in both human and Drosophila cells. Secondly, we systematically analyzed the human kinesin superfamily for cell cycle localization in relation to microtubule association to gain insight into the general principle of MAP regulation in the cell cycle. Thirdly, we focused on one novel Drosophila MAP to understand the molecular mechanism and biological significance of MAP regulation. This integrated approach has provided the framework of MAP regulation critical for the interphase/mitosis transition.  相似文献   

18.
微生物蛋白质组学的定量分析   总被引:2,自引:0,他引:2  
越来越多的微生物基因组序列数据为系统地研究基因的调节和功能创造了有利条件.由于蛋白质是具有生物功能的分子,蛋白质组学在微生物基因组的功能研究中异军突起、蓬勃发展.微生物蛋白质组学的基本原则是,用比较研究来阐明和理解不同微生物之间或不同生长条件下基因的表达水平.显而易见,定量分析技术是比较蛋白质组学中急需发展的核心技术.对蛋白质组学定量分析技术在微生物蛋白质组研究中的进展进行了综述.  相似文献   

19.
Zhang F  Chen JY 《BMC genomics》2010,11(Z2):S12

Background

Breast cancer is worldwide the second most common type of cancer after lung cancer. Plasma proteome profiling may have a higher chance to identify protein changes between plasma samples such as normal and breast cancer tissues. Breast cancer cell lines have long been used by researches as model system for identifying protein biomarkers. A comparison of the set of proteins which change in plasma with previously published findings from proteomic analysis of human breast cancer cell lines may identify with a higher confidence a subset of candidate protein biomarker.

Results

In this study, we analyzed a liquid chromatography (LC) coupled tandem mass spectrometry (MS/MS) proteomics dataset from plasma samples of 40 healthy women and 40 women diagnosed with breast cancer. Using a two-sample t-statistics and permutation procedure, we identified 254 statistically significant, differentially expressed proteins, among which 208 are over-expressed and 46 are under-expressed in breast cancer plasma. We validated this result against previously published proteomic results of human breast cancer cell lines and signaling pathways to derive 25 candidate protein biomarkers in a panel. Using the pathway analysis, we observed that the 25 “activated” plasma proteins were present in several cancer pathways, including ‘Complement and coagulation cascades’, ‘Regulation of actin cytoskeleton’, and ‘Focal adhesion’, and match well with previously reported studies. Additional gene ontology analysis of the 25 proteins also showed that cellular metabolic process and response to external stimulus (especially proteolysis and acute inflammatory response) were enriched functional annotations of the proteins identified in the breast cancer plasma samples. By cross-validation using two additional proteomics studies, we obtained 86% and 83% similarities in pathway-protein matrix between the first study and the two testing studies, which is much better than the similarity we measured with proteins.

Conclusions

We presented a ‘systems biology’ method to identify, characterize, analyze and validate panel biomarkers in breast cancer proteomics data, which includes 1) t statistics and permutation process, 2) network, pathway and function annotation analysis, and 3) cross-validation of multiple studies. Our results showed that the systems biology approach is essential to the understanding molecular mechanisms of panel protein biomarkers.
  相似文献   

20.

Background

Supplementation of broiler chicken diets with probiotics may improve carcass characteristics and meat quality. However, the underlying molecular mechanism remains unclear. In the present study, 2D-DIGE-based proteomics was employed to investigate the proteome changes associated with improved carcass traits and meat quality of Arbor Acres broilers (Gallus gallus) fed the probiotic Enterococcus faecium.

Results

The probiotic significantly increased meat colour, water holding capacity and pH of pectoral muscle but decreased abdominal fat content. These meat quality changes were related to the altered abundance of 22 proteins in the pectoral muscle following E. faecium feeding. Of these, 17 proteins have central roles in regulating meat quality due to their biological interaction network. Altered cytoskeletal and chaperon protein expression also contribute to improved water holding capacity and colour of meat, which suggests that upregulation of chaperon proteins maintains cell integrity and prevents moisture loss by enhancing folding and recovery of the membrane and cytoskeletal proteins. The down-regulation of β-enolase and pyruvate kinase muscle isozymes suggests roles in increasing the pH of meat by decreasing the production of lactic acid. The validity of the proteomics results was further confirmed by qPCR.

Conclusions

This study reveals that improved meat quality of broilers fed probiotics is triggered by proteome alterations (especially the glycolytic proteins), and provides a new insight into the mechanism by which probiotics improve poultry production.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1167) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号