首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song XZ  Andreeva IE  Pedersen SE 《Biochemistry》2003,42(14):4197-4207
Fluorescent energy transfer measurements of dansyl-C6-choline binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were used to determine binding characteristics of the alpha gamma and alpha delta binding sites. Equilibrium binding measurements show that the alpha gamma site has a lower fluorescence than the alpha delta site; the emission difference is due to differences in the intrinsic fluorescence of the bound fluorophores rather than differences in energy transfer at the two sites. Stopped-flow fluorescence kinetics showed that dissociation of dansyl-C6-choline from the AChR in the desensitized conformation occurs 5-10-fold faster from the alpha gamma site than from the alpha delta site. The dissociation rates are robust for distinct protein preparations, in the presence of noncompetitive antagonists, and over a broad range of ionic strengths. Equilibrium fluorescent binding measurements show that dansyl-C6-choline binds with higher affinity to the alpha delta site (K = 3 nM) than to the alpha gamma site (K = 9 nM) when the AChR is desensitized. Similar affinity differences were observed for acetylcholine itself. The distinct dissociation rates permit the extent of desensitization to be measured at each site during the time course of binding. This sequential mixing method of measuring the desensitized state population at each agonist site can be applied to study the mechanism of AChR activation and subsequent desensitization in detail.  相似文献   

2.
To determine the importance of electrostatic interactions for agonist binding to the nicotinic acetylcholine receptor (AChR), we examined the affinity of the fluorescent agonist dansyl-C6-choline for the AChR. Increasing ionic strength decreased the binding affinity in a noncompetitive manner and increased the Hill coefficient of binding. Small cations did not compete directly for dansyl-C6-choline binding. The sensitivity to ionic strength was reduced in the presence of proadifen, a noncompetitive antagonist that desensitizes the receptor. Moreover, at low ionic strength, the dansyl-C6-choline affinities were similar in the absence or presence of proadifen, a result consistent with the receptor being desensitized at low ionic strength. Similar ionic strength effects were observed for the binding of the noncompetitive antagonist [(3)H]ethidium when examined in the presence and absence of agonist to desensitize the AChR. Therefore, ionic strength modulates binding affinity through at least two mechanisms: by influencing the conformation of the AChR and by electrostatic effects at the binding sites. The results show that charge-charge interactions regulate the desensitization of the receptor. Analysis of dansyl-C6-choline binding to the desensitized conformation using the Debye-Hückel equation was consistent with the presence of five to nine negative charges within 20 A of the acetylcholine binding sites.  相似文献   

3.
4.
Agonist-binding kinetics to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were measured using sequential-mixing stopped-flow fluorescence methods to determine the contribution of each individual site to agonist-induced opening and desensitization. Timed dansyl-C6-choline (DC6C) binding followed by its dissociation upon mixing with high, competing agonist concentrations revealed four kinetic components: an initial, fast fluorescence decay, followed by a transient increase, and then two characteristic decays that reflect dissociation from the desensitized agonist sites. The transient increase resulted from DC6C binding to the open-channel based on its prevention by proadifen, a noncompetitive antagonist. Further characterization of DC6C channel binding by the inhibition of [3H]phencyclidine binding and by equilibrium measurements of DC6C fluorescence yielded KD values of 2-4 microM for the desensitized AChR and approximately 600 microM for the closed state. At this site, DC6C displayed a strongly blue-shifted emission spectrum, higher intrinsic fluorescence, and weaker energy transfer from tryptophans than when bound to either agonist site. The initial, fast fluorescence decay was assigned to DC6C dissociation from the alphadelta site of the AChR in its closed conformation, on the basis of inhibition with the site-selective antagonists d-tubocurarine and alpha-conotoxin MI. Fast decay amplitude data indicated an apparent affinity of 0.9 microM for the closed-state alphadelta site; the closed-state alphagamma-site affinity is inferred to be near 100 microM. These values and the known affinities for the desensitized conformation show that the alphagamma site drives AChR desensitization to a approximately 40-fold greater extent than the alphadelta site, undergoes energetically larger conformational changes, and is the primary determinant of agonist potency.  相似文献   

5.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

6.
Electrostatic surface potentials in the vestibule of the nicotinic acetylcholine receptor (nAChR) were computed from structural models using the University of Houston Brownian Dynamics program to determine their effect on ion conduction and ionic selectivity. To further determine whether computed potentials accurately reflect the electrostatic environment of the channel, the potentials were used to predict the rate constants for diffusion-enhanced fluorescence energy transfer; the calculated energy transfer rates are directly comparable with those determined experimentally (see companion article by Meltzer et al. in this issue). To include any effects on the local potentials by the bound acceptor fluorophore crystal violet, its binding site was first localized within the pore by fluorescence energy transfer measurements from dansyl-C6-choline bound to the agonist sites and also by simulations of binding using Autodock. To compare the computed potentials with those determined experimentally, we used the predicted energy transfer rates from Tb3+ chelates of varying charge to calculate an expected potential using the Boltzmann relationship. This expected potential (from -20 to -40 mV) overestimates the values determined experimentally (from -10 to -25 mV) by two- to fourfold at similar conditions of ionic strength. Although the results indicate a basic discrepancy between experimental and computed surface potentials, both methods demonstrate that the vestibular potential has a relatively small effect on conduction and selectivity.  相似文献   

7.
The spectroscopic properties and specificity of binding of a fluorescent quaternary amine, ethidium, with acetylcholine receptor-enriched membranes from Torpedo californica have been examined. Competition binding with [3H]phencyclidine in the presence of carbamylcholine showed that ethidium binds with high affinity to a noncompetitive inhibitor site (KD = 3.6 X 10(-7) M). However, in the presence of alpha-toxin, ethidium's affinity is substantially lower (KD approximately 1 X 10(-3) M). Ethidium was also found to enhance [3H]acetylcholine binding with a KD characteristic of ethidium binding to a high-affinity noncompetitive inhibitor site. These findings indicate that ethidium binds to an allosteric site which is regulated by agonist binding and can convert the agonist sites from low to high affinity. Fluorescence titrations of ethidium in the presence of carbamylcholine yielded a similar KD (2.5 X 10(-7) M) and showed an ethidium stoichiometry of one site/acetylcholine receptor monomer. Ethidium was completely displaced by noncompetitive inhibitors such as phencyclidine, histrionicotoxin, and dibucaine. The enhanced fluorescence lifetime of the bound species showed that the increased fluorescence intensity reflects a 13-fold increase in quantum yield for the complex compared to ethidium in buffer. Fractional dissociation of ethidium with phencyclidine produced a double-exponential fluorescence decay rate with lifetime components characteristic of ethidium free in solution and bound to the receptor. These data argue that the alterations in ethidium fluorescence elicited by other ligands is due to a change in the fraction of specifically bound ethidium rather than a change in quantum yield of a pre-existing ethidium-acetylcholine receptor complex. The extent of polarization indicates that bound ethidium is strongly immobilized. The magnitude of the quantum yield enhancement and the shifts of excitation and emission maxima of bound ethidium suggest that its binding site is within a hydrophobic domain with limited accessibility to the aqueous phase.  相似文献   

8.
We have examined the interaction of the nicotinic acetylcholine receptor with decidium diiodide, a bisquaternary analogue of ethidium containing 10 methylene groups between the endocyclic and trimethylamino quaternary nitrogens. Decidium inhibits mono-[125I]iodo-alpha-toxin binding, inhibits agonist-elicited 22Na+ influx in intact cells, augments agonist competition with mono-[125I]iodo-alpha-toxin binding, and enhances [3H]phencyclidine (PCP) binding to a noncompetitive inhibitor site. These effects occur over similar concentration ranges (half-maximum effects between 0.1 and 0.4 microM). Thus, decidium binds to the agonist site and converts the receptor to a desensitized state exhibiting increased affinity for agonist and heterotropic inhibitors. These properties are similar to metaphilic antagonists characterized in classical pharmacology. At higher concentrations decidium associates directly with the noncompetitive inhibitor site identified by [3H]phencyclidine binding. Dissociation constants of decidium at this site in the resting and desensitized states are determined to be 29 and 1.2 microM, respectively. Analysis of fluorescence excitation and emission maxima reveal that binding to both the agonist and noncompetitive inhibitor sites is associated with approximately 2-fold enhancement of fluorescence. The excitation maximum for decidium bound at the agonist site appears at 490 nm while that for decidium bound at the noncompetitive inhibitor site appears at 530 compared to 480 nm in buffer. These results suggest that decidium experiences a more hydrophobic environment upon binding to the nicotinic acetylcholine receptor sites, particularly to the noncompetitive inhibitor site. Fluorescence energy transfer between N'-fluorescein isothiocyanate-lysine-23 alpha-toxin (FITC-toxin), and decidium is not detected when each is bound to one of the two agonist sites on the receptor. This allows a minimal distance to be estimated between fluorophores. In contrast, energy transfer is observed between decidium nonspecifically associated with the membrane or with nonspecific sites and the FITC-toxin at the agonist sites.  相似文献   

9.
The energy transfer processes between carotenoids and Chls have been studied by femtosecond transient absorption in the CP29-WT complex, which contains only two carotenoids per polypeptide located in the L1 and L2 sites, and in the CP29-E166V mutant in which only the L1 site is occupied. The comparison of these two samples allowed us to discriminate between the energy transfer pathways from the two carotenoid binding sites and thus to obtain detailed information on the Chl organization in CP29 and to assign the acceptor chlorophylls. For both samples, the main transfer occurs from the S(2) state of the carotenoid. In the case of the L1 site the energy acceptor is the Chl a 680 nm (A2), whereas the Chl a 675 nm (A4-A5) and the Chl b 652 nm (B6) are the acceptors from the xanthophyll in the L2 site. These transfers occur with lifetimes of 80-130 fs. Two additional transfers are observed with 700-fs and 8- to 20-ps lifetimes. Both these transfers originate from the carotenoid S(1) states. The faster lifetime is due to energy transfer from a vibrationally unrelaxed S(1) state, whereas the 8- to 20-ps component is due to a transfer from the S(1,0) state of violaxanthin and/or neoxanthin located in site L2. A comparison between the carotenoid to Chl energy transfer pathways in CP29 and LHCII is presented and differences in the structural organization in the two complexes are discussed.  相似文献   

10.
The electrostatic environments near the acetylcholine binding sites on the nicotinic acetylcholine receptor (nAChR) and acetylcholinesterase were measured by diffusion-enhanced fluorescence energy transfer (DEFET) to determine the influence of long-range electrostatic interactions on ligand binding kinetics and net binding energy. Changes in DEFET from variously charged Tb3+ -chelates revealed net potentials of -20 mV at the nAChR agonist sites and -14 mV at the entrance to the AChE active site, in physiological ionic strength conditions. The potential at the alphadelta-binding site of the nAChR was determined independently in the presence of d-tubocurarine to be -14 mV; the calculated potential at the alphagamma-site was approximately threefold stronger than at the alphadelta-site. By determining the local potential in increasing ionic strength, Debye-Hückel theory predicted that the potentials near the nAChR agonist binding sites are constituted by one to three charges in close proximity to the binding site. Examination of the binding kinetics of the fluorescent acetylcholine analog dansyl-C6-choline at ionic strengths from 12.5 to 400 mM revealed a twofold decrease in association rate. Debye-Hückel analysis of the kinetics revealed a similar charge distribution as seen by changes in the potentials. To determine whether the experimentally determined potentials are reflected by continuum electrostatics calculations, solutions to the nonlinear Poisson-Boltzmann equation were used to compute the potentials expected from DEFET measurements from high-resolution models of the nAChR and AChE. These calculations are in good agreement with the DEFET measurements for AChE and for the alphagamma-site of the nAChR. We conclude that long-range electrostatic interactions contribute -0.3 and -1 kcal/mol to the binding energy at the nAChR alphadelta- and alphagamma-sites due to an increase in association rates.  相似文献   

11.
The general case of F?rster-type energy transfer is that in which energy is exchanged in both directions between two unlike fluorophores. In such cases, energy is transferred from the conventionally defined donor to the conventionally defined acceptor (forward transfer) and at the same time from the acceptor to the donor (reverse transfer). Expressions are derived to describe the fluorescence intensities and lifetimes of fluorophores undergoing simultaneous forward and reverse transfer; these are compared with corresponding quantities for the case more usually considered, in which only forward transfer is significant. It is shown that the presence of reverse transfer removes the distinction between donor and acceptor, and allows such anomalous effects as 'acceptor quenching'. A confirmatory example is described. It is shown that the equations generally used in distance determination by steady-state fluorescence spectroscopy can also be applied in the presence of reverse transfer, if a correction term is included; however, for lifetime spectroscopy the correction is more complex.  相似文献   

12.
We describe an approach to creating a new class of luminophores which display both long wavelength emissions exceeding 600 nm and long lifetimes. These luminophores are based on resonance energy transfer (RET) from a long lifetime donor to a short lifetime but long wavelength acceptor. We demonstrated the possibility of obtaining these desirable spectral properties using donors and acceptors noncovalently bound to DNA. The donor was a ruthenium (Ru) metal-ligand complex in which one of the diimine ligands intercalated into double-helix DNA. The acceptors were either nile blue, TOTO-3, or TO-PRO-3. Upon binding of the acceptor to donor-labeled DNA, we found that the acceptor quantum yield was remarkably enhanced so that the wavelength-integrated intensities of the donor and acceptor bound to DNA were many-fold greater than the intensity of the donor and acceptor alone when separately bound to DNA. The origin of this effect is efficient energy transfer from the donor. Under these conditions the effective overall quantum yield approaches that of the acceptor. Importantly, the increased quantum yield can be obtained while maintaining usefully long apparent acceptor lifetimes of 30 to 80 ns. The effect of an increased quantum yield from a low quantum yield donor may find use in assays to detect macromolecular binding interactions. These results suggest the synthesis of covalently linked donor-acceptor pairs with the desirable spectral properties of long wavelength emission, high quantum yield, and moderately long lifetimes for gated detection.  相似文献   

13.
14.
The quercetin binding sites on spinach chloroplast coupling factor 1 (CF1) have been investigated using direct and competitive binding, stopped-flow, temperature-jump, and fluorescence resonance energy transfer measurements. It was found that 8-anilino-1-naphthalensulfonic acid (ANS) competes with quercetin binding at two sites on the solubilized enzyme which are distinct from the two tight nucleotide binding sites and the 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reactive site. The bimolecular association of quercetin with CF1 is too fast to measure directly and is followed by two slower conformational changes. The distances from the tight nucleotide sites to the quercetin-ANS sites were estimated as 40-48 A by fluorescence resonance energy transfer using 1,N6-ethenoadenosine diphosphate and 1,N6-ethenoadenylyl imidodiphosphate as donors and quercetin as the acceptor. The distance from the quercetin-ANS site to the NBD-C1 reactive site was found to be about 30 A using ANS as a donor and NBD-C1 reacted with a tyrosine group on CF1 as the energy acceptor. A model is proposed for the relative location of these sites on CF1.  相似文献   

15.
Spatial relationships between Lys-107, which binds the C-6 phosphate group of the substrate, and fast-reacting Cys-239, located outside the active site of rabbit muscle aldolase, were studied by means of resonance energy transfer. The Lys-107 residue was covalently linked to pyridoxal phosphate (fluorescence donor) and the Cys-239 residue was modified by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (fluorescence acceptor). The energy transfer between donor and acceptor has been demonstrated. The steady-state and the lifetime measurements indicate that in solution the distance between Lys-107 and Cys-239 in the aldolase molecule is 12.4 A assuming chi 2 = 2/3.  相似文献   

16.
B Mitra  G G Hammes 《Biochemistry》1989,28(7):3063-3069
Fluorescence resonance energy-transfer measurements were made on the membrane-bound chloroplast coupling factor. The distances from the N,N'-dicyclohexylcarbodiimide-binding site on the membrane-bound portion of the enzyme (CF0) to the vesicle surface and to two sulfhydryl sites on the gamma-polypeptide were determined. The dicyclohexylcarbodiimide-binding site was labeled with the fluorescent species N-cyclohexyl-N'-pyrenylcarbodiimide. The vesicle surface was labeled with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine. Steady-state energy transfer between the fluorescent-labeled enzyme (energy donor) and varying concentrations of the ethanolamine derivative (energy acceptor) indicated that the distance of closest approach between the energy donor and the outer vesicle surface is 16-24 A. Two specific sites on the gamma-polypeptide were reacted with a coumarinylmaleimide derivative; one is a sulfhydryl that can be labeled only on the thylakoids under energized conditions (the "light" site), while the other is the disulfide site that regulates enzymatic activity. Energy-transfer measurements utilizing steady-state fluorescence and fluorescence lifetime methods indicated that the dicyclohexylcarbodiimide site is approximately 41 A from the light site and approximately 50 A from the gamma-disulfide site. These distances are used to extend the current structural model of the chloroplast coupling factor.  相似文献   

17.
Resonance energy transfer was measured between the active site domains of the brain isozyme of creatine kinase (CK-BB). The reactive thiol near the active sites, one on each subunit of the dimeric protein, was derivatized using 5-[2-[iodoacetyl)amino)ethyl]aminonaphthalene-1-sulfonic acid (AED), 2-[4'-iodoacetamidoanilino]naphthalene-6-sulfonic acid (AANS) and 5-iodoacetamidofluorescein (AF). Suitable donor/acceptor protein conjugated hybrids were prepared by controlled kinetics producing CK-BB-AED/AF and CK-BB-AANS/AF. Transfer efficiencies, measured from the quenching of the donor lifetime and steady-state sensitized acceptor emission, ranged from 0.10 to 0.17. From determination of the donor/acceptor overlap integrals, donor quantum yields and attempts to delimit the orientation factor using steady-state and phase-resolved anisotropy measurements, it was found that a suitable estimate of the range between the active sites was between 45 and 57 A. This range is similar to that reported previously for the muscle isozyme of creatine kinase (Grossman, S.H. (1989) Biochemistry 28, 4894-4902) but is a significantly greater distance than detected for the hybrid, myocardial specific isozyme (Grossman, S.H. (1983) Biochemistry 22, 5369-5375).  相似文献   

18.
Fluorescence resonance energy transfer was used to measure the distances between three nucleotide binding sites on solubilized chloroplast coupling factor from spinach and between each nucleotide site and two tyrosine residues which are important for catalytic activity. The nucleotide energy donor was 1,N6-ethenoadenosine di- or triphosphate, and the nucleotide energy acceptor was 2'(3')-(trinitrophenyl)adenosine diphosphate. The tyrosine residues were specifically labeled with 7-chloro-4-nitro-2,1,3-benzoxadiazole, which served as an energy acceptor. The results obtained indicate the three nucleotide binding sites form a triangle with sides of 44, 48, and 36 A. (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Two of the nucleotide sites are approximately equidistant from each of the two tyrosines: one of the nucleotide sites is about 37 A and the other about 41 A from each tyrosine. The third nucleotide site is about 41 A from one of the tyrosines and greater than or equal to 41 A from the other tyrosine.  相似文献   

19.
Distance measurements in cardiac troponin C   总被引:2,自引:0,他引:2  
Intramolecular distance measurements were made in cardiac troponin C (cTnC) by fluorescence energy transfer using Eu3+ or Tb3+ as energy donors and Nd3+ or an organic chromophore as acceptors. The laser-induced luminescence of bound Eu3+ is quenched in Eu1Nd1cTnC with a lifetime of 0.328 ms, compared with 0.43 ms for Eu2cTnC. The enhanced decay corresponds to an energy transfer efficiency of 0.25, or a distance of 1.1 nm between the two high affinity sites. We have also labeled cTnC with 4-dimethylaminophenylazophenyl-4'-maleimide (DAB-Mal) at the two cysteine residues (Cys-35 and Cys-84). Energy transfer measurements were carried out between Tb3+ bound to the high affinity sites and the labels attached to the domain containing the low affinity site. Upon uv irradiation at pH 6.7, Tb1cTnCDAB emits tyrosine-sensitized Tb3+ luminescence that decays bioexponentially with lifetimes of 1.29 and 0.76 ms. The shorter lifetime is ascribed to energy transfer from Tb3+ to the DAB labels, yielding an average distance of 3.4 nm between the donor and the acceptors. At pH 5.0, however, the luminescence decays exclusively with a single lifetime of 1.31 ms, suggesting that under these conditions all Tb3+ ions are more than 5.2 nm away from the label. Thus cTnC, like skeletal TnC, undergoes a pH-dependent conformational transition which converts an elongated structure at lower pH's to a rather compact conformation in a more physiological medium.  相似文献   

20.
D T Cronce  W D Horrocks 《Biochemistry》1992,31(34):7963-7969
Excitation spectroscopy of the 7F0----5D0 transition of Eu3+ and diffusion-enhanced energy transfer are used to study metal-binding characteristics of the calcium-binding protein parvalbumin from codfish. Energy is transferred from Eu3+ ions occupying the CD- and EF-binding sites to the freely-diffusing Co(III) coordination complex energy acceptors: [Co(NH3)6]3+, [Co(NH3)5H2O]3+, [CoF(NH3)5]2+, [CoCl(NH3)5]2+, [Co(NO2)3(NH3)3], and [Co(ox)3]3-. In the absence of these inorganic energy acceptors, the excited-state lifetimes of Eu3+ bound to the CD and EF sites are indistinguishable, even in D2O; however, in the presence of the positively charged energy acceptor complexes, the Eu3+ probes in the cod parvalbumin have different excited-state lifetimes due to a greater energy-transfer site from Eu3+ in the CD site than from this ion in the EF site. The observation of distinct lifetimes for Eu3+ in the two sites allows the study of the relative binding site affinities and selectivity, using other members of the lanthanide ion series. Our results indicate that during the course of a titration of the metal-free protein, Eu3+ fills the two sites simultaneously. Eu3+ is competitively displaced by other Ln3+ ions, with the CD site showing a preference for the larger Ln3+ ions while the EF site shows little, if any, competitive selectivity across the Ln3+ ion series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号