首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active site reactivity and specificity of RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) from Azotobacter vinelandii, have been investigated through ligand binding, site-directed mutagenesis, and X-ray crystallographic techniques, in a combined approach. In native RhdA the active site Cys230 is found persulfurated; fluorescence and sulfurtransferase activity measurements show that phosphate anions interact with Cys230 persulfide sulfur atom and modulate activity. Crystallographic analyses confirm that phosphate and hypophosphite anions react with native RhdA, removing the persulfide sulfur atom from the active site pocket. Considering that RhdA and the catalytic subunit of Cdc25 phosphatases share a common three-dimensional fold as well as active site Cys (catalytic) and Arg residues, two RhdA mutants carrying a single amino acid insertion at the active site loop were designed and their phosphatase activity tested. The crystallographic and functional results reported here show that specific sulfurtransferase or phosphatase activities are strictly related to precise tailoring of the catalytic loop structure in RhdA and Cdc25 phosphatase, respectively.  相似文献   

2.
Recent investigations have shown that the rhodanese domains, ubiquitous structural modules which might represent an example of conserved structures with possible functional diversity, are structurally related to the catalytic subunit of Cdc25 phosphatase enzymes. The major difference characterizing the active-site of the Azotobacter vinelandii rhodanese RhdA, with respect to the closely related Cdc25s (A, B, C), is that in Cdc25 phosphatases the active site loop [His-Cys-(X)5-Arg] is one residue longer than in RhdA [His-Cys-(X)4-Arg]. According to the hypothesis that the length of the RhdA active-site loop should play a key role in substrate recognition and catalytic activity, RhdA scaffold was the starting point for producing mutants with single-residue insertion to generate the catalytic loop HCQTHAHR (in RhdA-Ala) and HCQTHSHR (in RhdA-Ser). Analyses of the catalytic performances of the engineered RhdAs revealed that elongation of the catalytic loop definitely compromised the ability to catalyze sulfur transfer reactions, while it generated 'phosphatase' enzymes able to interact productively with the artificial substrate 3-O-methylfluorescein phosphate. Although this study is restricted to an example of rhodanese modules (RhdA), it provided experimental evidence of the hypothesis that a specific mutational event (a single-residue insertion or deletion in the active-site loop) could change the selectivity from sulfur- to phosphate-containing substrates (or vice versa).  相似文献   

3.
Rhodanese is an ubiquitous enzyme that in vitro catalyses the transfer of a sulfur atom from suitable donors to nucleophilic acceptors by way of a double displacement mechanism. During the catalytic process the enzyme cycles between a sulfur-free and a persulfide-containing form, via formation of a persulfide linkage to a catalytic Cys residue. In the nitrogen-fixing bacteria Azotobacter vinelandii the rhdA gene has been identified and the encoded protein functionally characterized as a rhodanese. The crystal structure of the A. vinelandii rhodanese has been determined and refined at 1.8 A resolution in the sulfur-free and persulfide-containing forms. Conservation of the overall three-dimensional fold of bovine rhodanese is observed, with substantial modifications of the protein structure in the proximity of the catalytic residue Cys230. Remarkably, the native enzyme is found as the Cys230-persulfide form; in the sulfur-free state the catalytic Cys residue adopts two alternate conformations, reflected by perturbation of the neighboring active-site residues, which is associated with a partly reversible loss of thiosulfate:cyanide sulfurtransferase activity. The catalytic mechanism of A. vinelandii rhodanese relies primarily on the main-chain conformation of the 230 to 235 active-site loop and on a surrounding strong positive electrostatic field. Substrate recognition is based on residues which are entirely different in the prokaryotic and eukaryotic enzymes. The active-site loop of A. vinelandii rhodanese displays striking structural similarity to the active-site loop of the similarly folded catalytic domain of dual specific phosphatase Cdc25, suggesting a common evolutionary origin of the two enzyme families.  相似文献   

4.
The occurrence of rhodanese-like proteins in the major evolutionary phyla, together with the observed abundance of these proteins also within the same genome, suggests that their function cannot be limited to cyanide scavenging. The aim of the present study was to investigate whether Azotobacter vinelandii RhdA, an enzyme possessing unique biochemical and structural features with respect to other members of rhodanese homology superfamily, could recognize a suitable protein as a potential acceptor of the sulfane sulfur held on its catalytic Cys residue. Both the potential sulfur-delivery RhdA-S and the sulfur-deprived RhdA were found to interact with either holo- or apo-adrenodoxin, the 'substrate' protein used in this work. Interaction of RhdA-S with apo-adrenodoxin led to mobilization of RhdA-S sulfane sulfur. Under appropriate conditions, the sulfur released from RhdA-S was productively used for 2Fe-2S cluster reconstitution to yield holo-adrenodoxin from apo-adrenodoxin in the absence of any other sulfur source. A comparison of the reactivity of RhdA-S with protein and non-protein thiols allowed also some insights into the accessibility of the sulfane sulfur carried by RhdA.  相似文献   

5.
After heterologous expression in Escherichia coli, the Azotobacter vinelandii rhodanese RhdA is purified in a persulfurated form (RhdA-SSH). We identified l-cysteine as the most effective sulfur source in producing RhdA-SSH. An E. coli soluble extract was required for in vitro persulfuration of RhdA, and the addition of pyridoxal-5'-phosphate increased RhdA-SSH production, indicating a likely involvement of a cysteine desulfurase. We were able to show the formation of a covalent complex between IscS and RhdA. By combining a time-course fluorescence assay and mass spectrometry analysis, we demonstrated the transfer of sulfur from E. coli IscS to RhdA.  相似文献   

6.
Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide.  相似文献   

7.
Chemical reconstitution of recombinant bovine adrenal mitochondrial apoadrenodoxin was carried out in the presence of the nonhomologous chaperone protein GroEL and of the cochaperone GroES, both in the presence and in the absence of ATP. The approach used here was different from the one characterizing studies on chaperone activity, as we used an adrenodoxin apoprotein, devoid of the cluster iron and sulfide, rather than a denaturant-unfolded form of the protein, and catalytic amounts of the chaperone proteins. A possible scaffolding role for two bacterial sulfur transferases, namely, rhodanese from Azotobacter vinelandii and a rhodanese-like sulfurtransferase from Escherichia coli, was also investigated in the absence of the enzyme substrates. The extent and the rate of adrenodoxin refolding following cluster insertion was measured by spectroscopy and by monitoring the activity recovery in a NADPH-cytochrome c reduction assay. These measurements were carried out on the unresolved reaction mixture and on the adrenodoxin-containing fraction obtained by HPLC fractionation of the reconstitution mixture at different reaction times. The rate and extent of cluster insertion and activity recovery were substantially improved by addition of GroEL and increased with increasing the GroEL/apoadrenodoxin ratio. GroES and ATP had no effect by themselves, and did not enhance the effect of GroEL. A. vinelandii rhodanese, the E. coli sulfurtransferase, and bovine serum albumin had no effect on the rate and yield of chemical reconstitution. The accelerated chemical reconstitution of apoadrenoxin in the presence of GroEL is therefore attributable to a scaffolding effect of this protein.  相似文献   

8.
The Rana catesbeiana (bullfrog) ribonucleases, which belong to the RNase A superfamily, exert cytotoxicity toward tumor cells. RC-RNase, the most active among frog ribonucleases, has a unique base preference for pyrimidine-guanine rather than pyrimidine-adenine in RNase A. Residues of RC-RNase involved in base specificity and catalytic activity were determined by site-directed mutagenesis, k(cat)/K(m) analysis toward dinucleotides, and cleavage site analysis of RNA substrate. The results show that Pyr-1 (N-terminal pyroglutamate), Lys-9, and Asn-38 along with His-10, Lys-35, and His-103 are involved in catalytic activity, whereas Pyr-1, Thr-39, Thr-70, Lys-95, and Glu-97 are involved in base specificity. The cytotoxicity of RC-RNase is correlated, but not proportional to, its catalytic activity. The crystal structure of the RC-RNase.d(ACGA) complex was determined at 1.80 A resolution. Residues Lys-9, His-10, Lys-35, and His-103 interacted directly with catalytic phosphate at the P(1) site, and Lys-9 was stabilized by hydrogen bonds contributed by Pyr-1, Tyr-28, and Asn-38. Thr-70 acts as a hydrogen bond donor for cytosine through Thr-39 and determines B(1) base specificity. Interestingly, Pyr-1 along with Lys-95 and Glu-97 form four hydrogen bonds with guanine at B(2) site and determine B(2) base specificity.  相似文献   

9.
10.
The interaction of the sulfurtransferase rhodanese (EC 2.8.1.1) with succinate dehydrogenase (EC 1.3.99.1), yeast alcohol dehydrogenase (EC 1.1.1.1) and bovine serum albumin was studied. Succinate dehydrogenase incorporates the sulfane sulfur of [35S]rhodanese and, in the presence of unlabelled rhodanese, also incorporates that of [35S]thiosulfate. Rhodanese releases most of its transferable sulfur and is re-loaded in the presence of thiosulfate. Rhodanese undergoes similar modifications with yeast alcohol dehydrogenase but this latter does not bind 35S in amounts comparable to those incorporated in succinate dehydrogenase: nearly all the 35S released by [35S]rhodanese is with low-molecular-weight compounds. Bovine serum albumin also binds very little sulfur and [35S]rhodanese present in the reaction mixture does not discharge its radioactive sulfur nor does it take up sulfur from thiosulfate. Sulfur release from rhodanese appears to depend on the presence of - SH groups in the acceptor protein. Sulfur incorporated into succinate dehydrogenase was analytically determined as sulfide. A comparison of the optical spectra of succinate dehydrogenase preparations incubated with or without rhodanese indicates that there is an effect of the sulfurtransferase on the iron-sulfur absorption of the flavorprotein. The interaction of rhodanese with succinate dehydrogenase greatly decreases the catalytic activity of rhodanese with respect to thiocyanate formation. This is attributed to modifications in rhodanese associated with the reduction of sulfane sulfur to sulfide. Thiosulfate in part protects from this deactivation. The reconstitutive capacity of succinate dehydrogenase increased in parallel with sulfur incorporated in that enzyme following its interaction with rhodanese.  相似文献   

11.
THiocystine (bis-[2-amino-2-carboxyethyl]trisulfide) is a natural substrate for rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). Analogs of thiocystine were prepared by eliminating the carboxyl or amino group or by lengthening the carbon chain. Of these only homothiocystine (bis-[2-amino-2-carboxypropyl]trisulfide) had appreciable activity as a substrate. At pH 8.6, the optimum for rhodanese, transfer of sulfane sulfur to cyanide in the presence of rhodanese was nonspecific. Only the sulfane sulfur of 35S-labeled thiocystine was transferred to rhodanese. Thus, thiocystine and thiosulfate both produce a rhodanese persulfide as a stable intermediate in sulfur transfer.  相似文献   

12.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

13.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

14.
The bacterial enzyme sulfane sulfurtransferase has been studied using spectroscopic techniques. The enzyme was characterized in terms of its near-UV absorption spectrum, molar ellipticity, intrinsic fluorescence spectra and the effects of general and ionic quenching reagents upon its fluorescence. Fluorescence model studies are consistent with sulfane sulfurtransferase having only a single tryptophan residue, which accounts for its low UV absorption coefficient and suggested that this residue is at least partially exposed to solvent. Second derivative absorption spectroscopy studies revealed that most of the bacterial enzyme's tyrosine residues are exposed to solvent. Unlike the better known sulfurtransferase, bovine liver rhodanese, sulfane sulfurtransferase does not undergo a detectable increase in quantum yield when shifting from the sulfur-containing covalent enzyme intermediate to the free enzyme form (which lacks sulfur) during catalysis. CD studies suggest that sulfane sulfurtransferase has a significantly higher proportion of alpha-helix than rhodanese. The renaturation of sulfane sulfurtransferase denatured in 6 M guanidine was shown to be rapid and complete provided that the enzyme had not been oxidized while in the denatured state. Sulfane sulfurtransferase, like rhodanese, catalyzes the transfer of sulfur from thiosulfate to cyanide via a persulfide intermediate, and displays remarkably similar kinetics in this process (Aird, B.A., Heinrikson, R.L. and Westley, J. (1987) J. Biol. Chem 262, 17327-17335). In light of this, the results of the structural studies with sulfane sulfurtransferase are compared and contrasted to data from similar experiments with rhodanese in hopes that they would provide insight about which phenomena observed with rhodanese are intrinsic to the process of transferring sulfur atoms.  相似文献   

15.
Sequence alignments of human molybdopterin synthase sulfurase, MOCS3, showed that the N-terminal domain is homologous to Escherichia coli MoeB, whereas the C-terminal domain is homologous to rhodanese-like proteins. Previous studies showed that the activity of the separately purified rhodanese-like domain of MOCS3 displayed 1000-fold lower activity in comparison to bovine rhodanese with thiosulfate as sulfur source. When the six amino acid active site loop of MOCS3 rhodanese-like domain was exchanged with the loop found in bovine rhodanese, thiosulfate:cyanide sulfurtransferase activity was increased 165-fold. Site-directed mutagenesis of each individual residue of the active site loop of the MOCS3 rhodanese-like domain showed that the charge of the last amino acid determines thiosulfate sulfurtransferase activity. Replacing Asp417 by threonine resulted in 90-fold increased activity, whereas replacing it by arginine increased the activity 470-fold. Using a fully defined in vitro system containing precursor Z, MOCS2A, E. coli MoaE, E. coli MoeB, Mg-ATP, MOCS3 rhodanese-like domain, and thiosulfate, it was shown that sulfur transfer to MOCS2A was also affected by the alterations, but not as drastically. Our studies revealed that in humans and most eukaryotes thiosulfate is not the physiologic sulfur donor for MOCS3, whereas in bacterial homologs, which have an arginine at the last position of the active site loop, thiosulfate can be used as a sulfur source for molybdenum cofactor biosynthesis. The phylogenetic analysis of MoeB homologs showed that eukaryotic homologs are of bacterial origin. Furthermore, it could be shown that an MoeB homolog named MoeZ, where the dual CXXC zinc-binding motif of the MoeB domain is not present, arose independently several times during evolution.  相似文献   

16.
A major catalytic difference between the two most common isoforms of bovine liver mitochondrial rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) has been observed. Both isoforms were shown to be capable of using reduced thioredoxin as a sulfur-acceptor substrate. However, only the less negative form in common with the recombinant mammalian rhodanese expressed in E. coli, can also catalyze the direct oxidation of reduced thioredoxin evidently by reactive oxygen species. These activities are understood in terms of the established persulfide structure (R-S-SH) of the covalently substituted rhodanese in the sulfurtransferase reaction and an analogous sulfenic acid structure (R-S-OH) when the enzyme acts as a thioredoxin oxidase. The observations suggest a role for one rhodanese isoform in the detoxication of intramitochondrial oxygen free radicals.  相似文献   

17.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

18.
Bovine liver rhodanese, which catalyzes the transfer of sulfur atoms between a variety of sulfur donor and sulfur acceptor substrates, is inhibited by metal cyanide complexes [Volini, M., Van Sweringen, B., & Chen, F.-Sh. (1978) Arch. Biochem. Biophys. 191, 205-215]. Crystallographic studies are described which reveal the binding mode of four different metal cyanides to bovine liver rhodanese: Na[Au(CN2], K2[Pt(CN)4], K2[Ni(CN)4], and K2[Zn(CN)4]. It appears that these complexes bind at one common site at the entrance of the active site pocket, interacting with the positively charged side chains of Arg-186 and Lys-249. This observation explains the inhibition of rhodanese by this class of compounds. For the platinum and nickel cyanide complexes virtually no other binding sites are observed. The gold complex binds, however, to three additional cysteine residues, thereby also displacing the extra sulfur atom which was bound to the essential Cys-247 in the sulfur-rhodanese complex. The zinc complex binds to completely different additional sites and forms complexes with the side chains of Asp-101 and His-203. Possible reasons for these different binding modes are discussed in terms of the preference for "hard" and "soft" ligands of these four metal ions.  相似文献   

19.
BACKGROUND: Rhodanese domains are structural modules occurring in the three major evolutionary phyla. They are found as single-domain proteins, as tandemly repeated modules in which the C-terminal domain only bears the properly structured active site, or as members of multidomain proteins. Although in vitro assays show sulfurtransferase or phosphatase activity associated with rhodanese or rhodanese-like domains, specific biological roles for most members of this homology superfamily have not been established. RESULTS: Eight ORFs coding for proteins consisting of (or containing) a rhodanese domain bearing the potentially catalytic Cys have been identified in the Escherichia coli K-12 genome. One of these codes for the 12-kDa protein GlpE, a member of the sn-glycerol 3-phosphate (glp) regulon. The crystal structure of GlpE, reported here at 1.06 A resolution, displays alpha/beta topology based on five beta strands and five alpha helices. The GlpE catalytic Cys residue is persulfurated and enclosed in a structurally conserved 5-residue loop in a region of positive electrostatic field. CONCLUSIONS: Relative to the two-domain rhodanese enzymes of known three-dimensional structure, GlpE displays substantial shortening of loops connecting alpha helices and beta sheets, resulting in radical conformational changes surrounding the active site. As a consequence, GlpE is structurally more similar to Cdc25 phosphatases than to bovine or Azotobacter vinelandii rhodaneses. Sequence searches through completed genomes indicate that GlpE can be considered to be the prototype structure for the ubiquitous single-domain rhodanese module.  相似文献   

20.
3-Mercaptopyruvate sulfurtransferases (MSTs) catalyze, in vitro, the transfer of a sulfur atom from substrate to cyanide, yielding pyruvate and thiocyanate as products. They display clear structural homology with the protein fold observed in the rhodanese sulfurtransferase family, composed of two structurally related domains. The role of MSTs in vivo, as well as their detailed molecular mechanisms of action have been little investigated. Here, we report the crystal structure of SseA, a MST from Escherichia coli, which is the first MST three-dimensional structure disclosed to date. SseA displays specific structural differences relative to eukaryotic and prokaryotic rhodaneses. In particular, conformational variation of the rhodanese active site loop, hosting the family invariant catalytic Cys residue, may support a new sulfur transfer mechanism involving Cys237 as the nucleophilic species and His66, Arg102 and Asp262 as residues assisting catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号