首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heme biosynthesis pathway in the yeast Saccharomyces cerevisiae is a highly regulated system, but the mechanisms accounting for this regulation remain unknown. In an attempt to identify rate-limiting steps in heme synthesis, which may constitute potential regulatory points, we constructed yeast strains overproducing two enzymes of the pathway: the porphobilinogen synthase (PBG-S) and deaminase (PBG-D). Biochemical analysis of the enzyme-overproducing strains revealed intracellular porphobilinogen and porphyrin accumulation. These results indicate that both enzymes play a rate-limiting role in yeast heme biosynthesis.  相似文献   

2.
Huang Z  Chen K  Xu T  Zhang J  Li Y  Li W  Agarwal AK  Clark AM  Phillips JD  Pan X 《Eukaryotic cell》2011,10(11):1536-1544
The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the primary mechanism of action by sampangine and that increases in the levels of reactive oxygen species are secondary to heme deficiency. We directly demonstrate that sampangine inhibits heme synthesis in the yeast Saccharomyces cerevisiae. It also causes accumulation of uroporphyrinogen and its decarboxylated derivatives, intermediate products of the heme biosynthesis pathway. Our results also suggest that sampangine likely works through an unusual mechanism-by hyperactivating uroporhyrinogen III synthase-to inhibit heme biosynthesis. We also show that the inhibitory effect of sampangine on heme synthesis is conserved in human cells. This study also reveals a surprising essential role for the interaction between the mitochondrial ATP synthase and the electron transport chain.  相似文献   

3.
Heme attachment to the apoforms of fungal mitochondrial cytochrome c and c1 requires the activity of cytochrome c and c1 heme lyases (CCHL and CC1HL), which are enzymes with distinct substrate specificity. However, the presence of a single heme lyase in higher eukaryotes is suggestive of broader substrate specificity. Here, we demonstrate that yeast CCHL is active toward the non-cognate substrate apocytochrome c1, i.e. CCHL promotes low levels of apocytochrome c1 conversion to its holoform in the absence of CC1HL. Moreover, that the single human heme lyase also displays a broader cytochrome specificity is evident from its ability to substitute for both yeast CCHL and CC1HL. Multicopy and genetic suppressors of the absence of CC1HL were isolated and their analysis revealed that the activity of CCHL toward cytochrome c1 can be enhanced by: 1) reducing the abundance of the cognate substrate apocytochrome c, 2) increasing the accumulation of CCHL, 3) modifying the substrate-enzyme interaction through point mutations in CCHL or cytochrome c1, or 4) overexpressing Cyc2p, a protein known previously only as a mitochondrial biogenesis factor. Based on the functional interaction of Cyc2p with CCHL and the presence of a putative FAD-binding site in the protein, we hypothesize that Cyc2p controls the redox chemistry of the heme lyase reaction.  相似文献   

4.
5.
Summary Mutants of Saccharomyces cerevisiae, described as catalase and cytochromes deficient (Pachecka et al., 1974), have been analyzed for heme biosynthesis ability. Some enzymatic activities involved in protoheme synthesis were measured in acellular extracts, whereas whole cells were analyzed for cytochrome spectra and for possible accumulation of porphyrin synthesis intermediates. A good correlation was found between these in vitro and in vivo studies. Results show that two mutants were impaired in 5-aminolevulinate synthesis, two mutants were devoid of uroporphyrinogen I synthetase activity and one mutant presented defects in coproporphyrinogen III oxidase activity.  相似文献   

6.
7.
Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a “permeability transition” similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A (CsA) unmasks an inhibitory site for inorganic phosphate (Pi) [Basso, E., Petronilli, V., Forte, M.A. and Bernardi, P. (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307-26311], the classical inhibitor of the permeability transition of yeast and (ii) that under proper experimental conditions a matrix Ca2+-dependence can be demonstrated in yeast as well [Yamada, A., Yamamoto, T., Yoshimura, Y., Gouda, S., Kawashima, S., Yamazaki, N., Yamashita, K., Kataoka, M., Nagata, T., Terada, H., Pfeiffer, D.R. and Shinohara Y. (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim. Biophys. Acta 1787, 1486-1491] suggest that the mitochondrial permeability transition has been conserved during evolution.  相似文献   

8.
Cytochrome c peroxidase, a mitochondrial enzyme of yeast   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
Polarized resonance Raman spectra of horse heart ferricytochrome c as a function of pH in the range 1.0–12, in the presence of the extrinsic ligands imidazole, cyanide, and azide, and in 4 M urea, are reported, as are resonance Raman spectra of heme undecapeptide in the presence of imidazole, pH 6.8 and pH 2.0, and with cyanide at pH 6.8. The range of investigation is 140–1700 cm?1, using the 5145-, 4880-, and 4579-Å excitations. The spectra have been analyzed in terms of complexity, sensitivity, and the conformation-heme energetics of the systems. The state of heme in various forms is analyzed with regard to heme energetics, core size, nature of planarity, and coordination configuration. All low-spin forms of heme c systems, cytochrome c, and heme models are concluded to be hexacoordinated, in-plane heme iron systems. The effect of the location of the heme in the protein environment is found to be a slight expansion of the porphyrin core, ~0.01 Å, while the covalent linkage of heme to protein and a mixed nature of axial coordination configuration seem to have little effect on the energetics of the heme group. Complex formation with extrinsic ligand, imidazole, cyanide, or azide, results in a slight contraction of the heme core. The formation of cytochrome c form IV, the alkaline form, is shown to follow a process with apK a of about 8.4, and similarly, acidic form II is created following the prior formation of an intermediate form with apK a of about 3.6. The precursor to form IV is interpreted as containing perturbation of the pyrrol rings, whereas the precursor to the acidic form seems to reflect alteration of the energetics of the CαCm α structures of the heme group. The acidic form of heme undecapeptide is a hexacoordinated high-spin heme with an estimated displacement of 0.25 Å from the heme plane. The pH 2 form of cytochrome c is also a hexacoordinated high-spin form with two weak axial ligands, but iron is in the plane of the porphyrin ring.  相似文献   

11.
12.
13.
Biosynthesis of heme in mammals   总被引:1,自引:0,他引:1  
  相似文献   

14.
Fractionation of yeast mitochondria by controlled hypotonic treatment revealed that the enzyme for heme attachment to apocytochrome c was localized in mitochondrial inner membrane. Trypsin digestion of mitoplasts resulted in a considerable loss of enzymatic activity, whereas the enzyme in intact mitochondria resisted the digestion. Triton X-100 solubilized the enzyme from the membrane but high concentration of salt did not. These results reveal that the enzyme for heme attachment is localized in mitochondrial inner membrane facing the cytoplasmic surface.  相似文献   

15.
The ARG-11 gene in Saccharomyces cerevisiae encodes a protein with the characteristic features of a family of 35 related membrane proteins that are encoded in the fungal genome. Some of them are known to transport various substrates and products across the inner membranes of mitochondria, but the functions of 29 members of the family are unknown. The yeast ARG-11 protein has been over-produced as inclusion bodies in Escherichia coli. It has been solubilized in the presence of sarkosyl, re-constituted into liposomes and shown to transport ornithine in exchange for protons. Its main physiological role is probably to take ornithine synthesized from glutamate in the mitochondrial matrix to the cytosol where it is converted to arginine.  相似文献   

16.
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria.  相似文献   

17.
Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.  相似文献   

18.
In Saccharomyces cerevisiae, alpha-isopropylmalate (alpha-IPM), which is produced in mitochondria, must be exported to the cytosol where it is required for leucine biosynthesis. Recombinant and reconstituted mitochondrial oxalacetate carrier (Oac1p) efficiently transported alpha-IPM in addition to its known substrates oxalacetate, sulfate, and malonate and in contrast to other di- and tricarboxylate transporters as well as the previously proposed alpha-IPM transporter. Transport was saturable with a half-saturation constant of 75 +/- 4 microm for alpha-IPM and 0.31 +/- 0.04 mm for beta-IPM and was inhibited by the substrates of Oac1p. Though not transported, alpha-ketoisocaproate, the immediate precursor of leucine in the biosynthetic pathway, inhibited Oac1p activity competitively. In contrast, leucine, alpha-ketoisovalerate, valine, and isoleucine neither inhibited nor were transported by Oac1p. Consistent with the function of Oac1p as an alpha-IPM transporter, cells lacking the gene for this carrier required leucine for optimal growth on fermentable carbon sources. Single deletions of other mitochondrial carrier genes or of LEU4, which is the only other enzyme that can provide the cytosol with alpha-IPM (in addition to Oac1p) exhibited no growth defect, whereas the double mutant DeltaOAC1DeltaLEU4 did not grow at all on fermentable substrates in the absence of leucine. The lack of growth of DeltaOAC1DeltaLEU4 cells was partially restored by adding the leucine biosynthetic cytosolic intermediates alpha-ketoisocaproate and alpha-IPM to these cells as well as by complementing them with one of the two unknown human mitochondrial carriers SLC25A34 and SLC25A35. Oac1p is important for leucine biosynthesis on fermentable carbon sources catalyzing the export of alpha-IPM, probably in exchange for oxalacetate.  相似文献   

19.
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号