首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2beta and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species) mimics the effects of endogenous CIF and activates iPLA2beta when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2beta prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2beta, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2beta activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2beta, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.  相似文献   

2.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

3.
Store-operated Ca(2+) entry (SOCE) is important for multiple functions of vascular smooth muscle cells (SMC), which, depending of their phenotype, can resemble excitable and nonexcitable cells. Similar to nonexcitable cells, Orai1 was found to mediate Ca(2+)-selective (CRAC-like) current and SOCE in dedifferentiated cultured SMC and smooth muscle-derived cell lines. However, the role of Orai1 in cation-selective store-operated channels (cat-SOC), which are responsible for SOCE in primary SMC, remains unclear. Here we focus on primary SMC, and assess the role of Orai1 and Ca(2+)-independent phospholipase A(2) (iPLA(2)β, or PLA2G6) in activation of cat-SOC current (I(cat-SOC)), SOCE, and SMC proliferation. Using molecular, electrophysiological, imaging, and functional approaches, we demonstrate that molecular knockdown of either Orai1 or iPLA(2)β leads to similar inhibition of the whole cell cat-SOC current and SOCE in primary aortic SMC and results in significant reduction in DNA synthesis and impairment of SMC proliferation. This is the first demonstration that Orai1 and iPLA(2)β are equally important for cat-SOC, SOCE, and proliferation of primary aortic SMC.  相似文献   

4.
Calcium (Ca2+) ionophores are the most effective agents able to elicit rapid membrane remodeling in vitro. This process exposes aminophospholipids at the surface of platelets and blood cells, thus providing a catalytic surface for coagulation. To explore the underlying mechanism, we examined if cytosolic Ca2+ ([Ca2+]i) increase through store-operated Ca2+ entry (SOCE) was necessary for the potent effect of ionophores. Recent studies have demonstrated that the Ca2+-ATPase inhibitor thapsigargin, although able to elevate [Ca2+]i through SOCE, does not trigger the rapid membrane remodeling. However, it was not known if the additional effect of ionophores to promote the process required SOCE or could it occur independently. We took advantage of two mutant B lymphoblast cell lines, characterized either by defective SOCE or altered membrane remodeling, to simultaneously assess [Ca2+]i increase and membrane remodeling in the presence of ionophores or thapsigargin. Results imply that ionophores trigger membrane remodeling without the requirement for a functional SOCE.  相似文献   

5.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

6.
Excitatory agonists can induce significant smooth muscle contraction under constant free Ca(2+) through a mechanism called Ca(2+) sensitization. Considerable evidence suggests that free arachidonic acid plays an important role in mediating agonist-induced Ca(2+)-sensitization; however, the molecular mechanisms responsible for maintaining and regulating free arachidonic acid level are not completely understood. In the current study, we demonstrated that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is expressed in vascular smooth muscle tissues. Inhibition of the endogenous iPLA(2) activity by bromoenol lactone (BEL) decreases basal free arachidonic acid levels and reduces the final free arachidonic acid level after phenylephrine stimulation, without significant effect on the net increase in free arachidonic acid stimulated by phenylephrine. Importantly, BEL treatment diminishes agonist-induced Ca(2+) sensitization of contraction from 49 +/- 3.6 to 12 +/- 1.0% (p < 0.01). In contrast, BEL does not affect agonist-induced diacylglycerol production or contraction induced by Ca(2+), phorbol 12,13-dibutyrate (a protein kinase C activator), or exogenous arachidonic acid. Further, we demonstrate that adenovirus-mediated overexpression of exogenous iPLA(2) in mouse portal vein tissue significantly potentiates serotonin-induced contraction. Our data provide the first evidence that iPLA(2) is required for maintaining basal free arachidonic acid levels and thus is essential for agonist-induced Ca(2+)-sensitization of contraction in vascular smooth muscle.  相似文献   

7.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

8.
In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging.  相似文献   

9.
Store-mediated Ca(2+) entry (SMCE), which is rapidly activated by depletion of the intracellular Ca(2+) stores, is a major mechanism for Ca(2+) influx. Several studies have involved tyrosine kinases in the activation of SMCE, such as pp60(src), although at present those involved in the early activation steps are unknown. Here we report the involvement of Bruton's tyrosine kinase (Btk) in the early stages of SMCE in human platelets. Cell treatment with thrombin or thapsigargin (TG) plus ionomycin (Iono) results in rapid activation of Btk, which was independent of rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) but dependent on H(2)O(2) generation. Platelet treatment with Btk inhibitors, LFM-A13 or terreic acid, significantly reduced TG+Iono- and thrombin-evoked SMCE. Btk was rapidly activated by addition of low concentrations of H(2)O(2), whose effect on Ca(2+) entry was prevented by Btk inhibitors. Our results indicate that pp60(src) and Btk co-immunoprecipitate after platelet stimulation with TG+Iono, thrombin or H(2)O(2). In addition, we have found that LFM-A13 impaired actin filament reorganization after store depletion and agonist-induced activation of pp60(src), while the inhibitor of pp60(src), a protein that requires actin reorganization for its activation, did not modify Btk activation, suggesting that Btk is upstream of pp60(src). We propose a role for Btk in the early steps of activation of SMCE in human platelets.  相似文献   

10.
Ca2+ signaling plays a central role in microglial activation, and several studies have demonstrated a store-operated Ca2+ entry (SOCE) pathway to supply this ion. Due to the rapid pace of discovery of novel Ca2+ permeable channels, and limited electrophysiological analyses of Ca2+ currents in microglia, characterization of the SOCE channels remains incomplete. At present, the prime candidates are ‘transient receptor potential’ (TRP) channels and the recently cloned Orai1, which produces a Ca2+-release-activated Ca2+ (CRAC) current. We used cultured rat microglia and real-time RT-PCR to compare expression levels of Orai1, Orai2, Orai3, TRPM2, TRPM7, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 channel genes. Next, we used Fura-2 imaging to identify a store-operated Ca2+ entry (SOCE) pathway that was reduced by depolarization and blocked by Gd3+, SKF-96365, diethylstilbestrol (DES), and a high concentration of 2-aminoethoxydiphenyl borate (50 μM 2-APB). The Fura-2 signal was increased by hyperpolarization, and by a low concentration of 2-APB (5 μM), and exhibited Ca2+-dependent potentiation. These properties are entirely consistent with Orai1/CRAC, rather than any known TRP channel and this conclusion was supported by patch-clamp electrophysiological analysis. We identified a store-operated Ca2+ current with the same properties, including high selectivity for Ca2+ over monovalent cations, pronounced inward rectification and a very positive reversal potential, Ca2+-dependent current potentiation, and block by SKF-96365, DES and 50 μM 2-APB. Determining the contribution of Orai1/CRAC in different cell types is crucial to future mechanistic and therapeutic studies; this comprehensive multi-strategy analysis demonstrates that Orai1/CRAC channels are responsible for SOCE in primary microglia.  相似文献   

11.
The IP3R (inositol 1,4,5-trisphosphate receptor) releases Ca2+ from the ER (endoplasmic reticulum) store upon binding to its ligand InsP3, which is thought to be generated by activation of certain membrane-bound G-protein-coupled receptors in Drosophila. Depletion of Ca2+ in the ER store also activates SOCE (store-operated Ca2+ entry) from the extracellular milieu across the plasma membrane, leading to a second rise in cytosolic Ca2+, which is then pumped back into the ER. The role of the IP3R and SOCE in mediating Ca2+ homoeostasis in neurons, their requirement in neuronal function and effect on neuronal physiology and as a consequence behaviour, are reviewed in the present article.  相似文献   

12.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

13.
G H Brough  S Wu  D Cioffi  T M Moore  M Li  N Dean  T Stevens 《FASEB journal》2001,15(10):1727-1738
Heterologous expression of the transient receptor potential-1 gene product (Trp1) encodes for a Ca2+ entry pathway, though it is unclear whether endogenous Trp1 contributes to a selective store-operated Ca2+ entry current. We examined the role of Trp1 in regulating both store-operated Ca2+ entry and a store-operated Ca2+ entry current, I(SOC), in A549 and endothelial cells. Twenty different 'chimeric' 2'-O-(2-methoxy)ethylphosphothioate antisense oligonucleotides were transfected separately using cationic lipids and screened for their ability to inhibit Trp1 mRNA. Two hypersensitive regions were identified, one at the 5' end of the coding region and the second in the 3' untranslated region beginning six nucleotides downstream of the stop codon. Antisense oligonucleotides stably decreased Trp1 at concentrations ranging from 10 to 300 nM, for up to 72 h. Thapsigargin increased global cytosolic Ca2+ and activated a I(SOC), which was small (-35 pA @ -80 mV), reversed near +40 mV, inhibited by 50 microM La3+, and exhibited anomalous mole fraction dependence. Inhibition of Trp1 reduced the global cytosolic Ca(2+) response to thapsigargin by 25% and similarly reduced I(SOC) by 50%. These data collectively support a role for endogenously expressed Trp1 in regulating a Ca2+-selective current activated upon Ca2+ store depletion.  相似文献   

14.
15.
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.  相似文献   

16.
Capacitative calcium entry (CCE), the mechanism that replenishes the internal Ca2+ stores with Ca2+ from the extracellular milieu in response to depletion of the store, is mediated by Ca2+ channels in the plasma membrane generally referred to as store-operated channels (SOCs). However, the roles of SOCs in the more physiological context have been fully elucidated. 2-Aminoethyl diphenylborinate (2-APB) strongly inhibits SOCs, as well as inositol-1,4,5 trisphosphate (IP3) receptors. In the present study, we screened a library of 166 2-APB analogues for effects on CCE and IP3-induced Ca2+ release in order to discover specific SOC inhibitors, and found that some blocked both store-operated and receptor-operated Ca2+ influx more strongly and selectively than 2-APB. Indeed, these new compounds ceased the prolonged intracellular Ca2+ oscillations induced by a low concentration of ATP in CHO-K1 cells. These novel SOC inhibitors will be valuable pharmacological and biochemical tools for elucidating the physiological roles.  相似文献   

17.
18.
The intracellular calcium signaling processes are tightly regulated to ensure the generation of calcium signals with the specific spatiotemporal characteristics required for regulating various cell functions. Compartmentalization of the molecular components involved in the generation of these signals at discrete intracellular sites ensures the signaling specificity and transduction fidelity of the signal for regulating downstream effector processes. Store-operated calcium entry (SOCE) is ubiquitously present in cells and is critical for essential cell functions in a variety of tissues. SOCE is mediated via plasma membrane Ca2+ channels that are activated when luminal [Ca2+] of the endoplasmic reticulum ([Ca2+]ER) is decreased. The ER-resident stromal interaction molecules, STIM1 and STIM2, respond to decreases in [Ca2+]ER by undergoing conformational changes that cause them to aggregate at the cell periphery in ER-plasma membrane (ER-PM) junctions. At these sites, STIM proteins recruit Orai1 channels and trigger their activation. Importantly, the two STIM proteins concertedly modulate Orai1 function as well as the sensitivity of SOCE to ER-Ca2+ store depletion. Another family of plasma membrane Ca2+ channels, known as the Transient Receptor Potential Canonical (TRPC) channels (TRPC1-7) also contribute to sustained [Ca2+]i elevation. Although Ca2+ signals generated by these channels overlap with those of Orai1, they regulate distinct functions in the cells. Importantly, STIM1 is also required for plasma membrane localization and activation of some TRPCs. In this review, we will discuss various molecular components and factors that govern the activation, regulation and modulation of the Ca2+ signal generated by Ca2+ entry pathways in response to depletion of ER-Ca2+ stores. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

19.
Store-operated Ca2+ entry (SOCE) from the extracellular space plays a critical role in agonist-mediated Ca2+ signaling in non-excitable cells. Here we show that SOCE is enhanced in COS-7 cells treated with staurosporine (ST), a protein kinase inhibitor. In COS-7 cells, stimulation with ATP induced Ca2+ release from intracellular Ca2+ stores and Ca2+ entry from the extracellular space. Ca2+ release was not affected by treatment with ST, but Ca2+ entry continued in the ST-treated cells even after the removal of ATP. ST did not inhibit Ca2+ sequestration into Ca2+ stores. The Ca2+ entry induced by cyclopiazonic acid (CPA), a reversible ER Ca2+ pump inhibitor, was maintained in ST-treated cells even after the removal of CPA, but was not maintained in the control cells. The sustained Ca2+ entry in ST-treated cells was completely attenuated by the SOCE inhibitors, La3+ and 2-APB. The large increase in Ca2+ entry produced in the cells co-expressing Venus-Orai1 and STIM1-mKO1 was stabilized with ST treatment, and confocal imaging of these cells suggested that the complex between Orai1 and STIM1 did not completely dissociate following the refilling of Ca2+ stores. These results show that SOCE remains activated even after the refilling of Ca2+ stores in ST-treated cells and that the effect of ST on SOCE may result from a stabilization of the Orai1–STIM1 interaction.  相似文献   

20.
Changes in the lipid composition of intracellular membranes are believed to take part in the molecular processes that sustain traffic between organelles of the endocytic and exocytic transport pathways. Here, we investigated the participation of the calcium-independent phospholipase A2 in the secretory pathway of mammary epithelial cells. Treatment with bromoenol lactone, a suicide substrate which interferes with the production of lysophospholipids by the calcium-independent phospholipase A2, resulted in the reduction of milk proteins secretion. The inhibitor slowed down transport of the caseins from the endoplasmic reticulum to the Golgi apparatus and affected the distribution of p58 and p23, indicating that the optimal process of transport of these proteins between the endoplasmic reticulum, the endoplasmic reticulum/Golgi intermediate compartment and/or the cis-side of the Golgi was dependent upon the production of lysolipids. Moreover, bromoenol lactone was found to delay the rate of protein transport from the trans-Golgi network to the plasma membrane. Concomitantly, membrane-bound structures containing casein accumulated in the juxtanuclear Golgi region. We concluded from these results that efficient formation of post-Golgi carriers also requires the phospholipase activity. These data further support the participation of calcium-independent phospholipase A2 in membrane trafficking and shed a new light on the tubulo/vesicular transport of milk protein through the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号