首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.

  相似文献   

2.
A new optical sensor based on the localized surface plasmon resonance (LSPR) in 2D arrays of silver nanoparticles (AgNPs) combined with a differential optical measurement method is developed. LSPR substrates comprised of self-assembled, 2D arrays of AgNPs exhibit coherent plasmon coupling manifested as a sharp peak in the blue spectral region. A bottom-up approach was used to fabricate reproducible and cost-effective substrates with a figure of merit (FOM) of ~24. The LSPR shift was determined by measuring the difference between light extinction at two wavelengths selected on each side of the sharp peak. The sharpness of the coherent plasmon resonance together with the differential measurement method enabled a record sensing resolution in bulk for a LSPR sensor of ~4.8E-6 RIU.  相似文献   

3.
Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired.  相似文献   

4.
Kim HS  Jung SH  Kim SH  Suh IB  Kim WJ  Jung JW  Yuk JS  Kim YM  Ha KS 《Proteomics》2006,6(24):6426-6432
We investigated the potential use of a spectral surface plasmon resonance (SPR) biosensor in a high-throughput analysis of mumps virus and a mumps virus-specific mAb on the arrays of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA). The PDDA surface was constructed by electrostatic adsorption of the polyelectrolyte onto a monolayer of 11-mercaptoundecanoic acid (MUA). Poly-L-lysine was also adsorbed onto the MUA monolayer and compared with the PDDA surface in the capacity of mumps virus immobilization. The PDDA surface showed a higher adsorption of mumps virus than the poly-L-lysine surface. The SPR signal caused by the virus binding onto the PDDA surface was proportional to the concentration of mumps virus from 0.5 x 10(5) to 14 x 10(5) pfu/mL. The surface structure of the virus arrays was visualized by atomic force microscopy. Then, a dose-dependent increase in the SPR signal was observed when various concentrations of the antimumps virus antibody in buffer or human serum were applied to the virus arrays, and their interaction was specific. Thus, it is likely that the spectral SPR biosensor based on the cationic polyelectrolyte surface may provide an efficient system for a high-throughput analysis of intact virus and serodiagnosis of infectious diseases.  相似文献   

5.
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity1-5. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions.Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures1,6,7. We developed a new model1 which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections.  相似文献   

6.
Gorris HH  Blicharz TM  Walt DR 《The FEBS journal》2007,274(21):5462-5470
Optical-fiber bundles have been employed as a versatile substrate for the fabrication of high-density microwell arrays. In this minireview, we discuss the application of optical-fiber-bundle arrays for a variety of biological problems. For genomics studies and microbial pathogen detection, individual beads have been functionalized with DNA probes and then loaded into the microwells. In addition, beads differentially responsive to vapors have been employed in an artificial olfaction system. Microwell arrays have also been loaded with living cells to monitor their individual response to biologically active compounds over long periods. Finally, the microwells have been sealed to enclose single enzyme molecules that can be used to measure individual molecule catalytic activity.  相似文献   

7.
Regular arrays of nonadherent B cells over large areas were produced with the use of micropatterned molecular templates consisting of a newly designed poly(allylamine)-g-poly(ethylene glycol) polycation graft copolymer. Polymer-on-polymer stamping (POPS) techniques were applied successfully to create micron scale patterns of the graft copolymer on negatively charged multilayer surfaces without losing resistance to the nonspecific adsorption of proteins. To generate templates for B cell arrays, the characteristics of the patterned surface were modified via introduction of surface biotinylation and specific protein adsorption. The qualities of B cell arrays resulting from each template suggest the binding strength between nonadherent B cells and the template surface is the controlling factor in the fabrication of clean and regular arrays of immobilized lymphocytes over large areas, which is critical in many bio-technological and immunological applications.  相似文献   

8.
9.
The physisorption of methane in homogeneous armchair open-ended SWBNNT triangular arrays was evaluated using grand canonical ensemble Monte Carlo simulation for tubes 11.08, 13.85, 16.62, and 19.41 ? [(8,8), (10,10), (12,12), and (14,14), respectively] in diameter, at temperatures of 273, 298, 323, and 373 K, and at fugacities of 0.5-9.0 Mpa. The intermolecular forces were modeled using the Lennard-Jones potential model. The absolute, excess, and delivery adsorption isotherms of methane were calculated for the various boron nitride nanotube arrays. The specific surface areas and the isosteric heats of adsorption, Q(st), were also studied, different isotherm models were fitted to the simulated adsorption data, and the model parameters were correlated. According to the results, it is possible to reach 108% and 140% of the US Department of Energy's target for CH(4) storage (180 v/v at 298 K and 35 bar) using the SWBNNT array with nanotubes 16.62 and 19.41 ? in diameter, respectively, as adsorbent. The results show that for a van der Waals gap of 3.4 ?, there is no interstitial adsorption except for arrays containing nanotubes with diameters of >15.8 ?. Multilayer adsorption starts to occur in arrays containing nanotubes with diameters of >16.62 ?, and the minimum pressure required for multilayer adsorption is 1.0 MPa. A brief comparison of the methane adsorption capacities of single-walled carbon and boron nitride nanotube arrays was also performed.  相似文献   

10.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

11.
The optical response of lanthanum hexaboride (LaB6) nanoparticles has been investigated by both theoretically and experimentally. The LaB6 nanoparticles obtained by solid-state reaction could avoid serious surface oxidization and exhibit excellent optical performance. The discrete dipole approximation (DDA) has been used to investigate the optical response of LaB6 nanoparticles with different sizes and different shapes. The calculation results coincide with the experimental results and reveal that the largest extinction peak value appears at 60 nm for cubic particles and 40 nm for spherical particles, respectively. Our calculation results show that the existence of the largest extinction peak value is not only due to the surface oxides but also relate to the particle shape of LaB6 compound. In addition, the LaB6 nanoparticles with cubic and spherical shapes exhibit different optical responses, and the cubic particles exhibit stronger near infrared (NIR) extinction than spherical particles. With increasing particle size, the extinction peak value of spherical particle decreases more rapidly than that of cubic ones.  相似文献   

12.
Scanning tunneling microscopy (STM) has been used to observe lysozyme at a graphite surface directly in order to gain mechanistic information about the molecular events involved in protein adsorption. The experiments were performed using an insulated tip in an aqueous protein solution, allowing the time course of the adsorption process to be followed, including the evolution of ordered arrays. Ordered arrays of protein molecules were observed, with lattice spacings that varied with bulk protein concentration and salt strength. Fourier analysis was used to determine the average cell dimensions of an array. From the observed lattice spacings, it was possible to estimate the surface coverage of the protein, and thus, by varying the conditions, adsorption isotherms could be obtained. These isotherms compare well with adsorption isotherms measured using total internal reflectance fluorescence (TIRF) spectroscopy on a hydrophobic surface. Since the protein is charged and the electrolyte has an effect on the isotherms, electrostatics are a likely controlling factor. Molecular electrostatics computations were thus used to investigate the possible origins of the lattice structure, and they suggest that favorable intermolecular interactions among adsorbed molecules are consistent with hydrophobically dominated protein-surface interactions.  相似文献   

13.

Background  

Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs).  相似文献   

14.
Cha T  Guo A  Jun Y  Pei D  Pei D  Zhu XY 《Proteomics》2004,4(7):1965-1976
A high-density poly(ethylene glycol) (PEG)-coated Si(111) surface is used for the immobilization of polyhistidine-tagged protein molecules. This process features a number of properties that are highly desirable for protein microarray technology: (i) minimal nonspecific protein adsorption; (ii) highly uniform surface functionality; (iii) controlled protein orientation; and (iv) highly specific immobilization reaction without the need of protein purification. The high-density PEG-coated silicon surface is obtained from the reaction of a multi-arm PEG (mPEG) molecule with a chlorine terminated Si(111) surface to give a mPEG film with thickness of 5.2 nm. Four out of the eight arms on each immobilized mPEG molecule are accessible for linking to the chelating iminodiacetic acid (IDA) groups for the binding of Cu(2+) ions. The resulting Cu(2+)-IDA-mPEG-Si(111) surface is shown to specifically bind 6x histidine-tagged protein molecules, including green fluorescent protein (GFP) and sulfotransferase (ST), but otherwise retains its inertness towards nonspecific protein adsorption. We demonstrate a particular advantage of this strategy: the possibility of protein immobilization without the need of prepurification. Surface concentrations of relevant chemical species are quantitatively characterized at each reaction step by X-ray photoelectron spectroscopy (XPS). This kind of quantitative analysis is essential in tuning surface concentration and chemical environment for optimal sensitivity in probe-target interaction.  相似文献   

15.

Background  

Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans do show similar artifacts, which might affect subsequent analysis. Although all but the starkest blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs), few tools are available to help with the detection of those defects.  相似文献   

16.
Suspension array technology: evolution of the flat-array paradigm.   总被引:18,自引:0,他引:18  
Suspension arrays of microspheres analyzed using flow cytometry offer a new approach to multiplexed assays for large-scale screening applications. By optically encoding micron-sized polymer particles, suspension microarrays can be created to enable highly multiplexed analysis of complex samples. Each element in the array is comprised of a subpopulation of particles with distinct optical properties and each array element bears a different surface receptor. Nucleic acids, proteins, lipids or carbohydrates can serve as receptors to support the analysis of a wide range of biomolecular assemblies, and applications in genomic and proteomic research are being developed. Coupled with recent innovations for rapid serial analysis of samples, molecular analysis with microsphere arrays holds significant potential as a general analysis platform for both research and clinical applications.  相似文献   

17.
One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D-and L-alanine on powderedd-andl-quartz, using change in radio-activity level as a criterion for both gross and differential adsorption.d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, andl-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.  相似文献   

18.
The molecular weights or shapes of Factor X preparations determined by gel filtration were dependent on the density of the BaSO(4) used for the initial adsorption from serum. One form obtained with BaSO(4) of density 2g/ml behaved as if it had a molecular weight of 39000 and possessed preformed clotting activity (Factor Xa), whereas that of the form adsorbed with BaSO(4) of density 1g/ml had a molecular weight of 69000 and consisted of inactive Factor X precursor. Thus degradation accompanied by activation seems to occur as a result of surface adsorption on high-density BaSO(4) and is associated with an interchange of protein between the two bands observed electrophoretically. The clotting and esterase activities measurable in vitro after complete activation were not matched by a corresponding ability to induce thrombus formation and ;lethality' in vivo. The most effective preparations of Factor X in this respect possessed preformed activity, which was enhanced in the presence of phospholipid. Factor X lost activity more rapidly in dilute solution, and its concentration at the surface of phospholipid micelles probably decreases loss by dilution in circulating blood.  相似文献   

19.
Combinatorial chemistry was first applied to the generation of peptide arrays in 1984. Since then, the field of combinatorial chemistry has evolved rapidly into a new discipline. There is a great need for the development of methods to examine the proteome functionally at a global level. Using many of the techniques and instruments developed for DNA microarrays, chemical microarray methods have advanced significantly in the past three years. High-density chemical microarrays can now be synthesized in situ on glass slides or be printed through covalent linkage or non-specific adsorption to the surface of the solid-support with fully automatic arrayers. Microfabrication methods enable one to generate arrays of microsensors at the end of optical fibers or arrays of microwells on a flat surface. In conjunction with the one-bead one-compound combinatorial library method, chemical microarrays have proven to be very useful in lead identification and optimization. High-throughput protein expression systems, robust high-density protein, peptide and small-molecule microarray systems, and automatic mass spectrometers are critical tools for the field of functional proteomics.  相似文献   

20.
The development of high-density arrays for proteomics has become a goal of SomaLogic, many other companies, and a wide variety of academic entities. Unfortunately, the word proteomics has come to mean virtually everything. We define proteomics as being derived from arrays of analyte-specific reagents (ASRs) used to measure (something about) proteins. As the density of the ASRs on a chip increases toward the number of proteins in an organism, the concept of proteomics moves toward comprehensive proteomics. At issue then, is what constitutes an ASR, and what differences between them lead toward more or less biological information from a high-density panel of ASRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号