首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preparations of covalently closed mitochondrial DNA of rat liver contain 10-30% of molecules that are converted into relaxed circular molecules after treatment with ribonuclease. Control experiments, with covalently closed bacteriophage PM2 DNA, indicate that ribonuclease-sensitivity cannot be induced either by depurination or by incubation with reducing agents.  相似文献   

2.
3.
4.
5.
The formation of 7-methylguanine in rat liver mitochondrial DNA following the administration of the powerful carcinogen, dimethylnitrosamine, and the weak carcinogen, methyl methanesulphonate was measured and compared to the alkylation of nuclear DNA by these agents. At all doses tested mitochondrial DNA was alkylated more extensively than nuclear DNA by dimethylnitrosamine but both types of cellular DNA were alkylated to about the same extent by methyl methanesulphonate. The physical structure of rat liver mitochondrial DNA isolated from animals treated with these agents was investigated by electrophoresis in agarose gels and by isopycnic centrifugation in CsCl gradients. These procedures carried out in the presence of ethidium bromide, an intercalating dye, separate closed circular forms of mitochondrial DNA from open circular molecules (containing a single-strand break) and linear molecules. Administration of dimethylnitrosamine produced a considerable decrease in the amount of mitochondrial DNA which could be isolated in the closed circular form and at higher doses of dimethylnitrosamine no closed circular mitochondrial DNA could be found. Methyl methanesulphonate was less effective at reducing the amount of closed circular mitochondrial DNA. One explantation of these results is that dimethylnitrosamine leads to strand breaks in mitochondrial DNA and the possible use of this system to investigate carcinogen-induced breaks in DNA is discussed.  相似文献   

6.
7.
8.
9.
10.
11.
Repeated injections of 1,3-diaminopropane into rats after partial hepatectomy caused a repression-type inhibiton of liver ornithine decarboxylase (EC 4.1.1.17) and totally prevented the marked increases in liver putrescine and spermidine concentrations that normally occur in response to partial hepatectomy. The inhibition of polyamine synthesis by diaminopropane was accompanied by a profound decrease (about 80%) in the synthesis of DNA in the regenerating rat liver without any changes in the synthesis of RNA and total liver protein.  相似文献   

12.
13.
Hepatic nuclei that are isolated in aquenous solutions of low ionic strength or glycerol contain all or nearly all the nonmitochondrial DNA polymerase activity of the cell. The presence of polymerase activity in the cytoplasm is due to extraction of nuclear enzymes by buffer and inorganic salts. Even with low ionic strength solutions, some leaching of nuclear enzymes occurs if the concentration of liver in the homogenizing medium is greater than 10%. As defined by sucrose gradient analysis, the normal adult rat liver nucleus contains mainly or entirely a single species of DNA polymerase (3.2 S) whereas the regenerating nucleus after 70% hepatectomy has an additional enzyme (7.1 S). The total activity of regenerating nuclei is about twice the normal value. The increase resides in the 7.1 S activity. The 7.1 S DNA polymerase had been purified partially from regenerating liver nuclei (isolated in low ionic strength solutions) and cytosol (prepared under conditions of nuclear enzyme extraction). The properties of the activity from the two sources are indistinguishable. A mixture of albumin and spermidine enhances by several-fold the activities of the 3.2 S and 7.1 S DNA polymerases. In the presence of spermidine, but not in its absence, the activity of the 7.1 S DNA polymerase is strictly proportional to the amount of the enzyme preparation.  相似文献   

14.
15.
16.
17.
The mitochondrial deoxyribonucleic acid (mtDNA) from a petite-negative yeast, Hansenula mrakii, was studied. A linear restriction map was constructed with 11 restriction enzymes. The linearity of the genome was confirmed by direct end labeling of the molecule, followed by restriction analysis. The molecular weight of the DNA was found to be 55,000 base pairs. This is the first linear mtDNA found in yeast species. Using specific gene probes obtained from Saccharomyces cerevisiae mtDNA, we have constructed a gene map of H. mrakii mtDNA. The arrangement of genes in this linear genome was very different from the circular mtDNA of other known yeasts.  相似文献   

18.
A DNA ligase has been extensively purified from nuclei of rat livers. The ligase seals single strand nicks in DNA with any of the four usual bases on either the 3 or 5 sides. It requires ATP and a divalent cation (Mg-2plus or Mn-2plus) for activity. At low Mg-2plus concentrations the activity is greatly stimulated by a variety of monovalent cations. Relatively small excesses of either monovalent or divalent cation above the amounts which give maximal activity lead to inhibition of activity. Poly(G) and poly(I) inhibit ligase activity; several other polyribonucleotides are not inhibitory. Low concentrations of inorganic pyrophosphate are inhibitory. The molecular weight of the ligase is estimated from gel filtration to be about 10 times 10-4.  相似文献   

19.
A DNA kinase has been partially purified from rat liver nuclei by a procedure which also yields DNA ligase. The kinase uses ATP to phosphorylate specifically the 5'-hydroxyl termini of oligodeoxynucleotides and of single- or double-stranded DNA, yielding 5'-phosphate termini and ADP. The kinase is inactive on RNA, or on oligodeoxynucleotides of chain length less than approximately 10 to 12 residues. The kinase requires a divalent cation (Mg2+, Mn2+, Co2+, Zn2+, Ni2+, or Ca2+) for activity and has an acidic pH optimum. It is inhibited by a variety of nucleotides as well as by very low levels of inorganic and organic sulfate compounds and sulfate analogues. The molecular weight of the kinase is estimated to be 8 times 10(4) from gel filtration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号