首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutagenesis studies on conserved histidine residues identified as possible metal binding ligands in clavaminic acid synthase isozyme 2 were consistent with His-145 and His-280 acting as iron ligands, in support of crystallographic and previous mutagenesis studies. Mutagenesis of the four cysteines and a glutamine residue, conserved in both clavaminic acid synthase isozymes 1 and 2, demonstrated that none of these residues is essential for activity.  相似文献   

2.
Fifteen structural analogues of proclavaminic acid have been synthesised and incubated with enzyme preparations from Streptomyces clavuligerus in order to test the substrate specificity of the enzymes responsible for converting monocyclic β-lactams to bicyclic β-lactams.  相似文献   

3.
The mechanism of the oxidative cyclization reaction catalyzed by clavaminic acid synthase (CAS) was studied in silico. First, a classical molecular dynamics (MD) simulation was performed to obtain a realistic structure of the CAS-Fe(IV)=O-succinate-substrate complex; then potential of mean force (PMF) was calculated to assess the feasibility of the beta-lactam ring, more specifically its C4' corner, approaching the oxo atom. Based on the MD structure, a relatively large model of the active site region was selected and used in the B3LYP investigation of the reaction mechanism. The computational results suggest that once the oxoferryl species is formed, the oxidative cyclization catalyzed by CAS most likely involves either a mechanism involving C4'(S)-H bond cleavage of the monocyclic beta-lactam ring, or a biosynthetically unprecedented mechanism comprising (1) oxidation of the hydroxyl group of PCA to an O-radical, (2) retro-aldol-like decomposition of the O-radical to an aldehyde and a C-centered radical, which is stabilized by the captodative effect, (3) abstraction of a hydrogen atom from the C4'(S) position of the C-centered radical by the Fe(III)-OH species yielding an azomethine ylide, and (4) 1,3-dipolar cycloaddition to the ylide with aldehyde acting as a dipolarophile. Precedent for the new proposed mechanism comes from the reported synthesis of oxapenams via 1,3-dipolar cycloaddition reactions of aldehydes and ketones.  相似文献   

4.
《MABS-AUSTIN》2013,5(3):309-319
The Triomab® family of trifunctional, bispecific antibodies that maintain an IgG-like shape are novel tumor targeting agents. These chimeras consist of two half antibodies, each with one light and one heavy chain, that originate from parental mouse IgG2a and rat IgG2b isotypes. This combination allows cost-effective biopharmaceutical manufacturing at an industrial scale since this specific mouse/rat isotype combination favors matching of corresponding antibody halves during production by means of quadroma technology. Whereas every Triomab® family member is composed of an anti-CD3 rat IgG2b half antibody for T cell recognition, the antigen binding site presented by the mouse IgG2a isotype is exchangeable. Several Triomab® antibodies have been generated that bind to tumor-associated antigens, e.g., EpCAM (catumaxomab), HER2/neu (ertumaxomab), CD20 (FBTA05), gangliosides GD2/GD3 (Ektomun®), on appropriate tumor target cells associated with carcinomas, lymphomas or melanomas. Catumaxomab (Removab®) was launched in Europe for treatment of malignant ascites in April 2009. Here, we report the structural and functional characterization this product. Mass spectrometry revealed an intact mass of 150511 Dalton (Da) and 23717 Da, 24716 Da, 51957 Da and 52019 Da of the reduced and alkylated rat light chain, mouse light chain, rat heavy chain, mouse heavy chain chains, respectively. The observed masses were in agreement with the expected masses based on the amino acid sequence obtained from cDNA sequencing. The glycosylation profile was similar to other human IgG consisting of biantennary oligosaccharides with different numbers of terminal galactose. CD spectroscopy showed mainly β-sheets secondary structure that is typical for IgG antibodies. Binding measurement revealed the unique trifunctional features of catumaxomab. Other analytical tools were used to evaluate characteristics of catumaxomab preparations, including the presence of isoforms and aggregates.  相似文献   

5.
The Triomab® family of trifunctional, bispecific antibodies that maintain an IgG-like shape are novel tumor targeting agents. These chimeras consist of two half antibodies, each with one light and one heavy chain, that originate from parental mouse IgG2a and rat IgG2b isotypes. This combination allows cost-effective biopharmaceutical manufacturing at an industrial scale since this specific mouse/rat isotype combination favors matching of corresponding antibody halves during production by means of quadroma technology. Whereas every Triomab® family member is composed of an anti-CD3 rat IgG2b half antibody for Tcell recognition, the antigen binding site presented by the mouse IgG2a isotype is exchangeable. Several Triomab® antibodies have been generated that bind to tumor-associated antigens, e.g., EpCAM (catumaxomab), HER2/neu (ertumaxomab), CD20 (FBTA05), gangliosides GD2/GD3 (Ektomun®), on appropriate tumor target cells associated with carcinomas, lymphomas or melanomas. Catumaxomab (Removab®) was launched in Europe for treatment of malignant ascites in April 2009. Here, we report the structural and functional characterization of this product. Mass spectrometry revealed an intact mass of 150511 Dalton (Da) and 23717 Da, 24716 Da, 51957 Da and 52019 Da of the reduced and alkylated rat light chain, mouse light chain, rat heavy chain, mouse heavy chain chains, respectively. The observed masses were in agreement with the expected masses based on the amino acid sequence obtained from cDNA sequencing. The glycosylation profile was similar to other human IgG consisting of biantennary oligosaccharides with different numbers of terminal galactose. CD spectroscopy showed mainly β-sheets secondary structure that is typical for IgG antibodies. Binding measurement revealed the unique trifunctional features of catumaxomab. Other analytical tools were used to evaluate characteristics of catumaxomab preparations, including the presence of isoforms and aggregates.  相似文献   

6.
Structural characterization of Escherichia coli sialic acid synthase   总被引:7,自引:0,他引:7  
Wnt-1, the vertebrate counterpart of the Drosophila wingless gene, plays an important role in the early morphogenesis of neural tissues. In this report, we have shown that overexpression of Wnt-1 can direct embryonic carcinoma P19 cells to differentiate into neuron-like cells in the absence of retinoic acid. Immunocytochemistry showed that these cells expressed neuronal markers, such as the neurofilament (NF) and microtubule-associated protein 2 (MAP2), but failed to express the glial cell marker, glial fibrillary acidic protein (GFAP). RT-PCR revealed that two basic helix-loop-helix (bHLH) genes, Mash-1 and Ngn-1, were up-regulated during the differentiation stage of Wnt-1-overexpressing P19 cells. These results suggest that the Wnt-1 gene promotes neuronal differentiation and inhibits gliogenesis during the neural differentiation of P19 cells, and that neural bHLH genes might be involved in this process.  相似文献   

7.
Goren MA  Fox BG  Bangs JD 《Biochemistry》2011,50(41):8853-8861
The substrate selectivity of four Trypanosoma brucei sphingolipid synthases was examined. TbSLS1, an inositol phosphorylceramide (IPC) synthase, and TbSLS4, a bifunctional sphingomyelin (SM)/ethanolamine phosphorylceramide (EPC) synthase, were inactivated by Ala substitutions of a conserved triad of residues His210, His253, and Asp257 thought to form part of the active site. TbSLS4 also catalyzed the reverse reaction, production of ceramide from sphingomyelin, but none of the Ala substitutions of the catalytic triad in TbSLS4 were able to do so. Site-directed mutagenesis identified residues proximal to the conserved triad that were responsible for the discrimination between charge and size of the different head groups. For discrimination between anionic (phosphoinositol) and zwitterionic (phosphocholine, phosphoethanolamine) head groups, doubly mutated V172D/S252F TbSLS1 and D172V/F252S TbSLS3 showed reciprocal conversion between IPC and bifunctional SM/EPC synthases. For differentiation of zwitterionic headgroup size, N170A TbSLS1 and A170N/N187D TbSLS4 showed reciprocal conversion between EPC and bifunctional SM/EPC synthases. These studies provide a mapping of the SLS active site and demonstrate that differences in catalytic specificity of the T. brucei enzyme family are controlled by natural variations in as few as three residue positions.  相似文献   

8.
Structural and functional organization of the animal fatty acid synthase   总被引:23,自引:0,他引:23  
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.  相似文献   

9.
10.
Case A  Stein RL 《Biochemistry》2003,42(11):3335-3348
Serine proteases catalyze the hydrolysis of amide bonds of their protein and peptide substrates through a mechanism involving the intermediacy of an acyl-enzyme. While the rate constant for formation of this intermediate, k(2), shows a dramatic dependence on peptide chain length, the rate constant for the intermediate's hydrolysis is relatively insensitive to chain length. To probe the mechanistic origins of this phenomenon, we determined temperature dependencies and solvent isotope effects for the alpha-chymotrypsin-catalyzed hydrolysis of Suc-Phe-pNA (K(s) = 1 mM, k(2) = 0.04 s(-)(1), and k(3) = 11 s(-)(1)), Suc-Ala-Phe-pNA (K(s) = 4 mM, k(2) = 0.9 s(-)(1), and k(3) = 42 s(-)(1)), and Suc-Ala-Ala-Pro-Phe-pNA (K(s) = 0.1 mM, k(2) = 98 s(-)(1), and k(3) = 71 s(-)(1)). We found that while the van't Hoff plots for K(s) and the Eyring plots for k(3) are linear for all three reactions, the Eyring plots for k(2) are convex, indicating that the process governed by k(2) is complex, possibly involving a coupling between active site chemistry and protein conformational isomerization. This interpretation is strengthened by solvent isotope effects on k(2) that are largely temperature-independent. Furthermore, the dependence of k(2) on peptide length is manifested entirely in the enthalpy of activation, suggesting a mechanism of catalysis by distortion. Taken together, this analysis of acylation suggests that extended substrates which can engage in subsite interactions are able to efficiently trigger the coupling mechanism between chemistry and a conformational isomerization that distorts the substrate and thereby promotes nucleophilic attack.  相似文献   

11.
Newberry KJ  Hou YM  Perona JJ 《The EMBO journal》2002,21(11):2778-2787
Cysteinyl-tRNA synthetase (CysRS) is highly specific for synthesis of cysteinyl adenylate, yet does not possess the amino acid editing activity characteristic of many other tRNA synthetases. To elucidate how CysRS is able to distinguish cysteine from non-cognate amino acids, crystal structures of the Escherichia coli enzyme were determined in apo and cysteine-bound states. The structures reveal that the substrate cysteine thiolate forms a single direct interaction with a zinc ion bound at the base of the active site cleft, in a trigonal bipyramidal geometry together with four highly conserved protein side chains. Cysteine binding induces movement of the zinc ion towards substrate, as well as flipping of the conserved Trp205 indole ring to pack on the thiol side chain. The imidazole groups of five conserved histidines lie adjacent to the zinc ion, forming a unique arrangement suggestive of functional significance. Thus, amino acid discrimination without editing arises most directly from the favorable zinc-thiolate interaction, which is not possible for non-cognate substrates. Additional selectivity may be generated during the induced-fit conformational changes that help assemble the active site.  相似文献   

12.
The trifunctional beta-subunit of anthranilate synthase complex of Neurospora crassa has been purified from a mutant which produces no detectable alpha-subunit. The isolated beta-subunit appeared to be a highly asymmetric dimer with a s20,w of 7.35 and an apparent molecular weight of 200,000 as determined by gel filtration on Sephacryl S-300 compared with a monomer molecular weight of approximately 84,000 Da as determined by sodium dodecyl sulfate-gel electrophoresis. The purified subunit was cleaved by elastase, trypsin, or chymotrypsin into fragments which retained the three enzyme activities. After elastase digestion, two active fragments were separated by gel filtration and ion exchange chromatography. A 30,000-Da fragment, which behaved as a monomer on gel filtration, interacted with free alpha-subunit to produce glutamine-dependent anthranilate synthase activity. A second 56,000-Da fragment, which behaved as an asymmetric dimer (apparent molecular weight 140,000) on gel filtration, retained both N-(5'-phosphoribosyl)anthranilate isomerase and indole-3-glycerol phosphate synthase activity. The failure to detect an NH2-terminal amino acid residue on either the intact beta-subunit or the 30,000-Da complementing fragment, while the 56,000-Da fragment possessed an NH2-terminal histidine residue, indicated that the complementing fragment was derived from the NH2-terminal sequence of the beta-subunit.  相似文献   

13.
Structural origins of fibrin clot rheology   总被引:9,自引:0,他引:9       下载免费PDF全文
The origins of clot rheological behavior associated with network morphology and factor XIIIa-induced cross-linking were studied in fibrin clots. Network morphology was manipulated by varying the concentrations of fibrinogen, thrombin, and calcium ion, and cross-linking was controlled by a synthetic, active-center inhibitor of FXIIIa. Quantitative measurements of network features (fiber lengths, fiber diameters, and fiber and branching densities) were made by analyzing computerized three-dimensional models constructed from stereo pairs of scanning electron micrographs. Large fiber diameters and lengths were established only when branching was minimal, and increases in fiber length were generally associated with increases in fiber diameter. Junctions at which three fibers joined were the dominant branchpoint type. Viscoelastic properties of the clots were measured with a rheometer and were correlated with structural features of the networks. At constant fibrinogen but varying thrombin and calcium concentrations, maximal rigidities were established in samples (both cross-linked and noncross-linked) which displayed a balance between large fiber sizes and great branching. Clot rigidity was also enhanced by increasing fiber and branchpoint densities at greater fibrinogen concentrations. Network morphology is only minimally altered by the FXIIIa-catalyzed cross-linking reaction, which seems to augment clot rigidity most likely by the stiffening of existing fibers.  相似文献   

14.
Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, we present the crystal structure of human MIOX in complex with myo-inosose-1 bound in a terminal mode to the MIOX diiron cluster site. Furthermore, from biochemical and biophysical results from N-terminal deletion mutagenesis we show that the N terminus is important, through coordination of a set of loops covering the active site, in shielding the active site during catalysis. EPR spectroscopy of the unliganded enzyme displays a two-component spectrum that we can relate to an open and a closed active site conformation. Furthermore, based on site-directed mutagenesis in combination with biochemical and biophysical data, we propose a novel role for Lys(127) in governing access to the diiron cluster.  相似文献   

15.
Human Na(+)-D-glucose cotransporter (hSGLT) inhibitors constitute the newest class of diabetes drugs, blocking up to 50% of renal glucose reabsorption in vivo. These drugs have potential for widespread use in the diabetes epidemic, but how they work at a molecular level is poorly understood. Here, we use electrophysiological methods to assess how they block Na(+)-D-glucose cotransporter SGLT1 and SGLT2 expressed in human embryonic kidney 293T (HEK-293T) cells and compared them to the classic SGLT inhibitor phlorizin. Dapagliflozin [(1S)-1,5,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-glucitol], two structural analogs, and the aglycones of phlorizin and dapagliflozin were investigated in detail. Dapagliflozin and fluoro-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-4-F-4-deoxy-D-glucitol] blocked glucose transport and glucose-coupled currents with ≈100-fold specificity for hSGLT2 (K(i) = 6 nM) over hSGLT1 (K(i) = 400 nM). As galactose is a poor substrate for SGLT2, it was surprising that galacto-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-galactitol] was a selective inhibitor of hSGLT2, but was less potent than dapagliflozin for both transporters (hSGLT2 K(i) = 25 nM, hSGLT1 K(i) = 25,000 nM). Phlorizin and galacto-dapagliflozin rapidly dissociated from SGLT2 [half-time off rate (t(1/2,Off)) ≈ 20-30 s], while dapagliflozin and fluoro-dapagliflozin dissociated from hSGLT2 at a rate 10-fold slower (t(1/2,Off) ≥ 180 s). Phlorizin was unable to exchange with dapagliflozin bound to hSGLT2. In contrast, dapagliflozin, fluoro-dapagliflozin, and galacto-dapagliflozin dissociated quickly from hSGLT1 (t(1/2,Off) = 1-2 s), and phlorizin readily exchanged with dapagliflozin bound to hSGLT1. The aglycones of phlorizin and dapagliflozin were poor inhibitors of both hSGLT2 and hSGLT1 with K(i) values > 100 μM. These results show that inhibitor binding to SGLTs is composed of two synergistic forces: sugar binding to the glucose site, which is not rigid, and so different sugars will change the orientation of the aglycone in the access vestibule; and the binding of the aglycone affects the binding affinity of the entire inhibitor. Therefore, the pharmacophore must include variations in both the structure of the sugar and the aglycone.  相似文献   

16.
l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH3) and hydrogen peroxide (H2O2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1 Å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62–71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode.  相似文献   

17.
The mechanisms by which nitric-oxide synthases (NOSs) bind and activate oxygen at their P450-type heme active site in order to synthesize nitric oxide from the substrate L-arginine are mostly unknown. To obtain information concerning the structure and properties of the first oxygenated intermediate of the enzymatic cycle, we have used a rapid continuous flow mixer and resonance Raman spectroscopy to generate and identify the ferrous dioxygen complex of the oxygenase domain of nNOS (Fe(2+)O(2) nNOSoxy). We detect a line at 1135 cm(-1) in the resonance Raman spectrum of the intermediate formed from 0.6 to 3.0 ms after the rapid mixing of the ferrous enzyme with oxygen that is shifted to 1068 cm(-1) with (18)O(2). This line is assigned as the O-O stretching mode (nu(O-O)) of the oxygenated complex of nNOSoxy. Rapid mixing experiments performed with nNOSoxy saturated with L-arginine or N(omega)-hydroxy-L-arginine, in the presence or absence of (6R)-5,6, 7,8-tetrahydro-L-biopterin, reveal that the nu(O-O) line is insensitive to the presence of the substrate and the pterin. The optical spectrum of this ferrous dioxygen species, with a Soret band wavelength maximum at 430 nm, confirms the identification of the previously reported oxygenated complexes generated by stopped flow techniques.  相似文献   

18.
gamma-aminobutyric acid type A (GABAA) receptors comprise a subfamily of ligand-gated ion channels whose activity can be modulated by ligands acting at the benzodiazepine binding site on the receptor. The benzodiazepine binding site was characterized using a site-directed mutagenesis strategy in which amino acids of the alpha5 subunit were substituted by their corresponding alpha1 residues. Given the high affinity and selectivity of alpha1-containing compared with alpha5-containing GABAA receptors for zolpidem, mutated alpha5 subunits were co-expressed with beta2 and gamma2 subunits, and the affinity of recombinant receptors for zolpidem was measured. One alpha5 mutant (bearing P162T, E200G, and T204S) exhibited properties similar to that of the alpha1 subunit, notably high affinity zolpidem binding and potentiation by zolpidem of GABA-induced chloride current. Two of these mutations, alpha5P162T and alpha5E200G, might alter binding pocket conformation, whereas alpha5T204S probably permits formation of a hydrogen bond with a proton acceptor in zolpidem. These three amino acid substitutions also influenced receptor affinity for CL218872. Our data thus suggest that corresponding amino acids of the alpha1 subunit, particularly alpha1-Ser204, are the crucial residues influencing ligand selectivity at the binding pocket of alpha1-containing receptors, and a model of this binding pocket is presented.  相似文献   

19.
20.
The functional mechanism of the F1Fo ATP synthase, like many membrane transporters and pumps, entails a conformational cycle that is coupled to the movement of H+ or Na+ ions across its transmembrane domain, down an electrochemical gradient. This coupling is an efficient means of energy transduction and regulation, provided that ion binding to the membrane domain, known as Fo, is appropriately selective. In this study we set out to establish the structural and energetic basis for the ion-binding selectivity of the membrane-embedded Fo rotors of two representative ATP synthases. First, we use a biochemical approach to demonstrate the inherent binding selectivity of these rotors, that is, independently from the rest of the enzyme. We then use atomically detailed computer simulations of wild-type and mutagenized rotors to calculate and rationalize their selectivity, on the basis of the structure, dynamics and coordination chemistry of the binding sites. We conclude that H+ selectivity is most likely a robust property of all Fo rotors, arising from the prominent presence of a conserved carboxylic acid and its intrinsic chemical propensity for protonation, as well as from the structural plasticity of the binding sites. In H+-coupled rotors, the incorporation of hydrophobic side chains to the binding sites enhances this inherent H+ selectivity. Size restriction may also favor H+ over Na+, but increasing size alone does not confer Na+ selectivity. Rather, the degree to which Fo rotors may exhibit Na+ coupling relies on the presence of a sufficient number of suitable coordinating side chains and/or structural water molecules. These ligands accomplish a shift in the relative binding energetics, which under some physiological conditions may be sufficient to provide Na+ dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号