首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Using the UVRABC nuclease as a reagent coupled with DNA restriction and hybridization analysis we have developed a method to quantify N-acetoxy-2-acetylaminofluorene (NAAAF)-induced DNA damage in the coding and noncoding sequences of the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary (CHO) cells. High performance liquid chromatography analysis shows that the only DNA adduct formed in NAAAF-treated CHO cells is N-(deoxyguanosine-C8-yl)-2-aminofluorene (dG-C8-AF). DNA sequencing analysis demonstrates that the UVRABC nuclease incises at all potential sites in which dG-C8-AF adduct may form in linear DNA fragments. We have found that the formation and removal of dG-C8-AF adducts in the coding and 3' downstream noncoding sequences of the DHFR domain are similar in cells treated with 10 microM NAAAF (3.1 adducts/14 kilobases); DNA adduct removal attains 70% for both sequences within 24 h. This result contrasts with that obtained for the repair of cyclobutane dipyrimidines in the DHFR gene, in which the repair efficiency is much higher in the coding region than in the 3' downstream noncoding region. Our results suggest that in CHO cells the repair pathway for aminofluorene DNA adducts is not the same as that for cyclobutane dipyrimidines. This new technique has the potential to detect a variety of chemical carcinogen induced DNA adducts at the gene level in cultured cells and in DNA isolated from animal tissues.  相似文献   

2.
3.
We have analyzed the fine structure of DNA repair in Chinese hamster ovary (CHO) cells within the G1 and G2 phases of the cell cycle. Repair of inactive regions of the genome has been suggested to increase in the G2 phase of the cell cycle compared with other phases. However, detailed studies of DNA repair in the G2 phase of the cell cycle have been hampered by technical limitations. We have used a novel synchronization protocol (D. K. Orren, L. N. Petersen, and V. A. Bohr, Mol. Cell. Biol. 15:3722-3730, 1995) which permitted detailed studies of the fine structure of DNA repair in G2. CHO cells were synchronized and UV irradiated in G1 or early G2. The rate and extent of removal of cyclobutane pyrimidine dimers from an inactive region of the genome and from both strands of the actively transcribed dihydrofolate reductase (DHFR) gene were examined within each phase. The repair of the transcribed strand of the DHFR gene was efficient in both G1 and G2, with no major differences between the two cell cycle phases. Neither the nontranscribed strand of the DHFR gene nor an inactive region of the genome was repaired in G1 or G2. CHO cells irradiated early in G2 were more resistant to UV irradiation than cells irradiated in late G1. Since we found no major difference in repair rates in G1 and G2, we suggest that G2 resistance can be attributed to the increased time (G2 and G1) available for repair before cells commit to DNA synthesis.  相似文献   

4.
5.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   

6.
7.
Preferential repair of damage in actively transcribed DNA sequences in vivo   总被引:4,自引:0,他引:4  
P C Hanawalt 《Génome》1989,31(2):605-611
  相似文献   

8.
By the use of a highly sensitive mapping procedure allowing the identification of the start sites of DNA replication in single-copy genomic regions of untreated, exponentially growing cultured cells (M. Giacca, L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, G. Contreas, G. Biamonti, G. Perini, F. Weighardt, S. Riva, and A. Falaschi, Proc. Natl. Acad. Sci. USA 91:7119-7123, 1994), the pattern of DNA replication of the Chinese hamster dihydrofolate reductase (DHFR) gene domain was investigated. The method entails the purification of short stretches of nascent DNA issuing from DNA replication origin regions and quantification, within this sample, of the abundance of different adjacent segments by competitive PCR. Distribution of marker abundance peaks around the site from which newly synthesized DNA had emanated. The results obtained by analysis of the genomic region downstream of the DHFR single-copy gene in asynchronous cultures of hamster CHO K1 cells are consistent with the presence of a single start site for DNA replication, located approximately 17 kb downstream of the gene. This site is coincident with the one detected by other studies using different techniques in CHO cell lines containing an amplified DHFR gene domain.  相似文献   

9.
10.
11.
The human excision repair gene ERCC-1 gene restores normal resistance to UV and mitomycin C in excision repair deficient chinese hamster ovary cells of complementation group 1. To investigate the involvement of the ERCC-1 gene in gene-specific repair of bulky lesions, we have studied the removal of damage induced by the antitumor agent cisplatin in CHO mutant 43-3B cells of group 1, with or without transfection with the ERCC-1 gene. Firstly, we determined the contribution of the ERCC-1 gene to the repair of interstrand crosslinks (ICL) induced by cisplatin and found efficient removal of ICLs from the dihydrofolate reductase (DHFR) gene in the ERCC-1 transfected 43-3B cells. We then assessed the contribution of ERCC-1 to the repair of intrastrand adducts (IA) induced by cisplatin. Compared to the wild-type parental cell line, the ERCC-1 transfected 43-3B cells repaired the IAs in the DHFR gene inefficiently. Thus, our data suggest that the ERCC-1 gene is more involved in the repair of interstrand crosslinks than in the removal of intrastrand adducts.  相似文献   

12.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

13.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

14.
15.
DNA replication in mammalian cells is a precisely controlled physical and temporal process, likely involving cis-acting elements that control the region(s) from which replication initiates. In B cells, previous studies showed replication timing to be early throughout the immunoglobulin heavy chain (Igh) locus. The implication from replication timing studies in the B-cell line MPC11 was that early replication of the Igh locus was regulated by sequences downstream of the C alpha gene. A potential candidate for these replication control sequences was the 3' regulatory region of the Igh locus. Our results demonstrate, however, that the Igh locus maintains early replication in a B-cell line in which the 3' regulatory region has been deleted from one allele, thus indicating that replication timing of the locus is independent of this region. In non-B cells (murine erythroleukemia cells [MEL]), previous studies of segments within the mouse Igh locus demonstrated that DNA replication likely initiated downstream of the Igh gene cluster. Here we use recently cloned DNA to demonstrate that segments located sequentially downstream of the Igh 3' regulatory region continue to replicate progressively earlier in S phase in MEL. Furthermore, analysis by two-dimensional gel electrophoresis indicates that replication forks proceed exclusively in the 3'-to-5' direction through the region 3' of the Igh locus. Extrapolation from these data predicts that initiation of DNA replication occurs in MEL at one or more sites within a 90-kb interval located between 40 and 130 kb downstream of the 3' regulatory region.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号