首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Plant dormancy and dormancy breaking depend, at least partially, on close relationships between buds and tissues underlying bud (bud stands). In Prunus persica, the dormancy was related to high nutrient absorption in bud stands linked to high plasmalemma ATPase (EC 3.6.1.3) activity. Two plasmalemma fractions was isolated from peach vegetative buds and bud stands using aqueous phase partitioning and ultracentrifugation. Results of markers enzyme assays indicated that both plasmalemma enriched fractions obtained were highly purified. During the dormancy period plasma membrane ATPase amount and activity were higher in bud stands than in buds. Moreover, assays performed at different temperatures (4, 18, 30 °C) indicated modifications of kinetic parameters (Km, Vm) in both tissues during dormancy release. In buds, from November to February, Km declined at 4°C and increased at 30 °C whereas no changes was measured at 18 °C and Vm increased at all temperature. In bud stands, no changes of Km was measured at 4 °C and 18 °C whereas an increase occurred at 30 °C and Vm decreased at all temperature. According to the results, it can be postulated that dormancy release in peach-tree could be related to modifications of plasma membrane ATPase properties, in buds and bud stands, during winter time.  相似文献   

2.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

3.
The properties of the ATPase in the facultative thermophile, Bacillus coagulans, grown at thermophilic or mesophilic temperatures were similar. Arrhenius plots did not show discontinuities indicative of thermoadaptation. Magnesium stimulation of the enzyme was dependant on the assay temperature but independant of the growth temperature. The ATPase in cells grown at 35°C or 55°C was equally thermostable at 65°C. In contrast, the ATPase from the mesophile, Bacillus megaterium (T max=42°C) was completely inactivated at 55°C in 5 min.  相似文献   

4.
Summary Phospholipase A2 (PLA2) was extracted from liver microsomal membranes of both 5 and 20°C-acclimated rainbow trout (Salmo gairdneri), using the non-ionic detergent, Triton X-100. Further purification was achieved by precipitation with 35–65% ammonium sulfate followed by gel filtration chromatography in the presence of 0.1% Triton X-100 on Sephadex G-200. These procedures resulted in a 30-fold purification and the removal of all traces of phospholipid from the enzyme of both warm-and cold-acclimated trout. Column elution profiles were similar for both acclimation groups, yielding a molecular weight estimate for the trout liver enzyme of 73,000. Comparisons of activity levels and kinetic parameters of PLA2 from warm-and cold-acclimated fish, indicated that compensation for temperature at nonsaturating substrate concentrations was an attribute of both the particulate (microsomal) enzyme and the lipid-free protein. Cold acclimation resulted in higher activity belowV max due primarily to decreased apparentK m values. These adaptations to temperature could not be attributed to the interaction of the enzyme with the membrane lipids, but were due to qualitative changes in the enzyme that resulted from acclimation. Other adaptive qualities of PLA2, such as reducedK m in response to acute decreases in temperature in warm-acclimated fish, were only apparent in particulate preparations, and thus were a function of the protein-lipid complex. These data suggest that an acclimation-induced increase in the activity of PLA2 may result in the activation of a deacylation-reacylation cycle at cold temperatures.Abbreviations PAGE polyacrylamide gel electrophoresis - PC phosphatidylcholine - PLA 2 phospholipase A2 - SDS sodium dodecylsulfate  相似文献   

5.
The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.  相似文献   

6.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

7.
Partially (6-fold) purified plasma membrane ATPase from an ethanol-sensitive yeast, Kloeckera apiculata, had an optimum pH of 6.0, an optimum temperature of 35°C, a K m of 3.6 mm ATP and a V max of 11 mol Pi/min.mg protein. SDS-PAGE of the semi-purified plasma membrane showed a major band of 106 kDa. No in vivo activation of the ATPase by glucose was observed. Although 4% (v/v) ethanol decreased the growth rate by 50% it did not affect the ATPase. Concentrations of ethanol 2% (v/v) did, however, inhibit the enzyme in vitro. The characteristics of the enzyme did not change during growth in the presence of ethanol.  相似文献   

8.
A -glycosidase of a thermophile, Thermus thermophilus, belonging to the glycoside hydrolase family 1, was cloned and overexpressed in Escherichia coli. The purified enzyme (Ttgly) has a broad substrate specificity towards -D-glucoside, -D-galactoside and -D-fucoside derivatives. The thermostability of Ttgly was exploited to study its kinetic properties within the range 25–80[emsp4 ]°C. Whatever the temperature, except around 60[emsp4 ]°C, the enzyme displayed non-Michaelian kinetic behavior. Ttgly was inhibited by high concentrations of substrate below 60[emsp4 ]°C and was activated by high concentrations of substrate above 60[emsp4 ]°C. The apparent kinetic parameters (k cat and K m ) were calculated at different temperatures. Both k cat and K m increased with an increase in temperature, but up to 75[emsp4 ]°C the values of k cat increased much more rapidly than the values of K m . The observed kinetics might be due to a combination of factors including inhibition by excess substrate and stimulation due to transglycosylation reactions. Our results show that the substrate could act not only as a glycosyl donor but also as a glycosyl acceptor. In addition, when the glucose was added to reaction mixtures, inhibition or activation was observed depending on both substrate concentration and temperature. A reaction model is proposed to explain the kinetic behavior of Ttgly. The scheme integrates the inhibition observed at high concentrations of substrate and the activation due to transglycosylation reactions implicating the existence of a transfer subsite.  相似文献   

9.
Some properties of a ficin-papain inhibitor from avian egg white   总被引:3,自引:0,他引:3  
A procedure has been established for the isolation, from sheep liver, of 6-phosphogluconate dehydrogenase which is homogeneous according to the criteria of the analytical ultracentrifuge, and isoelectric focusing. A systematic determination of the effects of pH, ionic strength, metal ions, and temperature, on the kinetic parameters of the isolated 6-phosphogluconate dehydrogenase has been carried out. Double-reciprocal plots of enzyme rate measurements as a function of substrate concentration indicate Km values of 15 μm for 6-phosphogluconate, and 7 μm for NADP+, under optimum assay conditions, and show no effect of the concentration of one substrate on the Km of the other substrate under the assay conditions employed. Ionic strength, monovalent and divalent metals, are apparently interchangeable in their ability to activate the enzyme, and act by decreasing the Km values of the enzyme, not by increasing the reaction rate. Concentrations of metals above the optimum are strongly inhibitory. Plots of ?log Km vs pH show inflection points at 8.3 for 6-phosphogluconate, and 6.5 for NADP+. At low substrate concentrations the pH optimum of the enzyme is at pH 7.7, but plots of V vs pH increase up to pH 9.1 (the enzyme is unstable at higher pH values). An Arrhenius plot shows a straight line between temperatures of 8.6 and 39.4 °C, and an energy of activation of 15,450 cal mole?1.  相似文献   

10.
Carboxypeptidase produced by Monascus purpureus IFO 4478 was purified to homogeneity. The purified enzyme is a heterodimer with a molecular mass of 132 kDa and consists of two subunits of 64 and 67 kDa. It is an acidic glycoprotein with an isoelectric point of 3.67 and 17.0% carbohydrate content. The optimum pH and temperature were 4.0 and 40 °C, respectively. The enzyme was stable between pH 2.0 and 8.0 at 37 °C for 1 h, and up to 50 °C at pH 5.0 for 15 min. The enzyme was strongly inhibited by piperastatin A, diisopropylfluoride phosphate (DFP), phenylmethylsulfonylfluoride (PMSF), and chymostatin, suggesting that it is a chymotrypsin-like serine carboxypeptidase. Monascus purpureus carboxypeptidase was also strongly inhibited by p-chloromercuribenzoic acid (PCMB) but not by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline, indicating that it requires cysteine residue but not metal ions for activity. Benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu), among the substrates tested, was the best substrate of the enzyme. The Km, Vmax, Kcat, and Kcat/Km values of the enzyme for Z-Tyr-Glu at pH 4.0 and 37 °C were 0.86 mM, 0.917 mM min–1, 291 s–1, and 339 mM–1 s–1, respectively.  相似文献   

11.
Summary The kinetic and stability characteristics of crude extract nitrile hydratase fromBrevibacterium R-312 were studied for the hydration of 3-cyanopyridine to nicotinamide. The enzyme was substrate and product inhibited and had the following kinetic constants:K m =28 mM;K p =36 mM;K s =155 mM;V m =5.8 mol/min/mg protein (25°C). Itsmaximum temperature and pH (phosphate buffer) were 35°C and 8.0, respectively and it had half-lives of 50 days, 10 days and 1 day at 4°C, 10°C and 25°C, respectively. The crude extract also exhibited amidase activity on nicotinamide, but it became significant only at nicotinamide concentrations greater than 300 mM. Mathematical models for batch and fed-batch hydrations were developed to account for substrate and product inhibitions and for enzyme decay. They predicted to within 10% experimental results for initial substrate and final product concentrations up to 300 mM; the accuracies decreased at higher concentrations primarily because of the relatively rapid hydrolysis of nicotinamide.  相似文献   

12.
Summary Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium ofPleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0–9.0, has maximal activity at 45°–50°C and pH 6.0–6.5, is inhibited by Ag+, Pb2+ and NaN3, and has aK m of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations fromP. eryngii.  相似文献   

13.
Oxidative deamination of putrescine, the precursor of polyamines, gives rise to γ-aminobutyraldehyde (ABAL). In this study an aldehyde dehydrogenase, active on ABAL, has been purified to electrophoretic homogeneity from rat liver cytoplasm and its kinetic behaviour investigated. The enzyme is a dimer with a subunit molecular weight of 51,000. It is NAD+-dependent, active only in the presence of sulphhydryl compounds and has a pH optimum in the range 7.3–8.4. Temperatures higher than 28°C promote slow activation and the process is favoured by the presence of at least one substrate. Km for aliphatic aldehydes decreases from 110 μM for ABAL and acetaldehyde to 2–3 μM for capronaldehyde. The highest relative V-values have been observed with ABAL (100) and isobutyraldehyde (64), and the lowest with acetaldehyde (14). Affinity for NAD+ is affected by the aldehyde present at the active site: Km for NAD+ is 70 μM with ABAL, 200 μM with isobutyraldehyde and capronaldehyde, and>800 μM with acetaldehyde. The kinetic behaviour at 37°C is quite complex; according to enzymatic models, NAD+ activates the enzyme (Kact 500 μM) while NADH competes for the regulatory site (Kin 70 μM). In the presence of high NAD+ concentrations (4 mM), ABAL promotes further activation by binding to a low-affinity regulatory site (Kact 10 mM). The data show that the enzyme is probably an E3 aldehyde dehydrogenase, and suggest that it can effectively metabolize aldehydes arising from biogenic amines.  相似文献   

14.
A hyper-thermostable, alkaline lipase from a newly-isolated, mesophilic Pseudomonas sp. was optimal at pH 11 and at 90 °C. It had a half-life of more than 13 h at 90 °C. It was activated by 30% when heated at 90 °C for 2 h. The enzyme had a greater affinity for mustard oil (K m=40 mg ml–1) than for olive oil (K m=140 mg ml–1).  相似文献   

15.
Summary Goldfish (Carassius auratus) were acclimated for 5 months at temperatures of either 2°C or 31°C. Natural actomyosin was prepared from white myotomal muscle and its Mg2+Ca2+ ATPase activity determined. Temperature acclimation results in adaptations in substrate turnover number and thermodynamic activation parameters of the ATPase. When assayed at 31°C the Mg2+Ca2+ ATPase of natural actomyosin was 4 times higher in 31°C than 2°C acclimated fish. Arrhenius plots of natural actomyosin ATPase from cold acclimated fish show a break in slope at 15–18°C. In contrast, the temperature dependence of warm acclimated actomyosin was linear. Activation enthalpy (H ) of the ATPase, calculated over the range 0–16°C, was approximately 8,000 cal/mole lower in 2°C than 32°C acclimated fish.In contrast, desensitised actomyosins from which the calcium regulatory proteins have been removed show a linear temperature dependence in the range 0–32°C and have similar properties in 2°C and 31°C acclimated fish. Cross-hybridisation of regulatory proteins (tropomyosin-troponins complex) from cold-acclimated fish to desensitised actomyosin from warm-acclimated fish alters the ATPase towards that of cold-acclimated natural actomyosin and vice versa. The results suggest that the regulatory proteins can influence the kinetics of the ATPase and, furthermore, that they are involved in the acclimation of the actomyosin to different cell temperatures.  相似文献   

16.
A dextran-hydrolysing enzyme from Lipomyces lipofer IGC 4042 was purified from the supernatant of cultures grown on a mineral medium with dextran, by ultrafiltration and gel filtration on Bio Gel A-0.5 m. This preparation gave only one band by disc gel electrophoresis. Glucose was the only product of dextran hydrolysis. Optimum pH and temperature for the activity of the enzyme were pH 4.5–5.0 and 45°C, respectively. The enzyme was most stable over a pH range of 4.5–6.0, and after 2 hours at 50°C maintained over 60% of its original activity. The molecular weight was 29,000 daltons and the isoelectric point was at pH 7. Km (45°C, pH 5) for dextran T-40 was 1.2×10–5 M. Glucose inhibited the enzyme competitively with a Ki (45°C, pH 5) of 0.5 mM.  相似文献   

17.
The bacteria Rhodococcus sp. and Xanthobacter autotrophicus have the ability to dehalogenate a broad range of halogenated hydrocarbons. The applicability of spray drying to the preservation of the microorganisms and the intracellular enzyme halidohydrolase (E.C.3.8.1.1) was examined. K2SO4, MgSO4, glutamate and sucrose were added as stabilizers and carriers. Spray drying was carried out at inlet air temperatures of 100–120 °C and outlet air temperatures of 65–72 °C. Best results were obtained by the addition of 5% K2SO4 and at 107 °C air inlet temperature. Dried preparations of Rhodococcus sp. exhibited a crystalline consistency and a 95% recovery of cellular activity. After storage at 4 °C for six months the enzyme preparation showed no loss in activity. Spray dried preparations of Xanthobacter autotrophicus showed only a 4% recovery of cellular activity.List of Symbols MSG Monosodiumglutamate - RC % Recovery of stabilizer and biomass - RCA % Recovery of cellular activity ([U/g biomass after the spraydrying]/[U/g biomass of untreated cells]) 100 - RCB % Recovery of biomass - SR % Survival rate - T 1 °C Inlet air temperature - T 2 °C Exit air temperature - W % Water content - Y.Akt % Yield in enzyme activity This work was supported by the Jubiläumsfond der Oesterreichischen Nationalbank, Projekt No. 4499.  相似文献   

18.
 The membrane-bound F1 sector of the H+–ATPase complex (F-type ATPase) in dark-adapted photosynthetic chromatophores is endowed with MgATP- and CaATP-dependent ATPase activities, both sensitive to inhibitors such as oligomycin and venturicidin. Because of contatamination of free Mg2 + and Ca2+ ions in chromatophore preparations, kinetic characterization of the two hydrolitic reactions can be performed only in the presence of both substrates, using a model for two alternative substrates. The two activities are characterized by similar maximal rates and affinity constants [VMgATP and VCaATP: 13±1 and 10±1 nmol s–1 ATP hydrolyzed (μmol BChl)–1; KMgATP and KCaATP: 0.22±0.06 and 0.20±0.05 mm]. However, only the MgATP-dependent ATPase is coupled to Δ*H + generation. In this process CaATP acts as an alternative substrate and a competitive inhibitor of the proton pump, with a KI coincident with KCaATP for the hydrolytic activity. This finding highlights the central role that the coordination chemistry of the ion-nucleotide complex plays in determining the proton gating mechanism at the catalytic site(s) of the enzyme complex. These results are discussed on the basis of the coordination properties of the ions and of the available information on the protein structure. Received: 5 December 1995 / Accepted: 7 March 1996  相似文献   

19.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

20.
The stabilization of Escherichia coli penicillin G acylase (PGA) conjugated with carboxymethylcellulose (CMC) against temperature and pH was studied. The 2,3-dialdehyde derivative of CMC obtained by periodate oxidation was covalently conjugated to PGA via Schiff's base formation. The inactivation mechanism of both native and CMC-conjugated PGA appeared to obey first order inactivation kinetics during prolonged incubations at 40–60 °C and in the pH range 4–9. Inactivation rate constants of conjugated enzyme were always lower, and half-life times were always higher than that of native PGA. The activation free energy of inactivation (G i values) of CMC-conjugated enzyme were found to be always higher than that of native PGA at all temperatures and pH values studied as another indicator of enzyme stabilization. Highest stability of CMC-conjugated enzyme was observed as nearly four-fold at 40 °C and pH 8.0. No changes were observed on the temperature and pH profiles of PGA after CMC conjugation. Lower K m and higher k cat values of PGA obtained after CMC conjugation indicates the improved effect of conjugation on the substrate affinity and catalytic performance of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号