首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
JY Ho  NJ Cira  JA Crooks  J Baeza  DB Weibel 《PloS one》2012,7(7):e41245
This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ~6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ~4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.  相似文献   

2.
Circulating tumor cells (CTCs) provide a readily accessible source of tumor material from patients with cancer. Molecular profiling of these rare cells can lead to insight on disease progression and therapeutic strategies. A critical need exists to isolate CTCs with sufficient quantity and sample integrity to adapt to conventional analytical techniques. We present a microfluidic platform (IsoFlux) that uses flow control and immunomagnetic capture to enhance CTC isolation. A novel cell retrieval mechanism ensures complete transfer of CTCs into the molecular assay. Improved sensitivity to the capture antigen was demonstrated by spike-in experiments for three cell lines of varying levels of antigen expression. We obtained spike-in recovery rates of 74%, 75%, and 85% for MDA-MB-231 (low), PC3 (middle), and SKBR3 (high) cell lines. Recovery using matched enumeration protocols and matched samples (PC3) yielded 90% and 40% recovery for the IsoFlux and CellSearch systems, respectively. In matched prostate cancer samples (N = 22), patients presenting more than four CTCs per blood draw were 95% and 36% using IsoFlux and CellSearch, respectively. An assay for detecting KRAS mutations was described along with data from patients with colorectal cancer, of which 87% presented CTCs above the assay's limit of detection (four CTCs). The CTC KRAS mutant rate was 50%, with 46% of patients displaying a CTC KRAS mutational status that differed from the previously acquired tissue biopsy data. The microfluidic system and mutation assay presented here provide a complete workflow to track oncogene mutational changes longitudinally with high success rates.  相似文献   

3.
Abnormal cell mechanical stiffness can point to the development of various diseases including cancers and infections. We report a new microfluidic technique for continuous cell separation utilizing variation in cell stiffness. We use a microfluidic channel decorated by periodic diagonal ridges that compress the flowing cells in rapid succession. The compression in combination with secondary flows in the ridged microfluidic channel translates each cell perpendicular to the channel axis in proportion to its stiffness. We demonstrate the physical principle of the cell sorting mechanism and show that our microfluidic approach can be effectively used to separate a variety of cell types which are similar in size but of different stiffnesses, spanning a range from 210 Pa to 23 kPa. Atomic force microscopy is used to directly measure the stiffness of the separated cells and we found that the trajectories in the microchannel correlated to stiffness. We have demonstrated that the current processing throughput is 250 cells per second. This microfluidic separation technique opens new ways for conducting rapid and low-cost cell analysis and disease diagnostics through biophysical markers.  相似文献   

4.
Monoclonal antibodies to Pseudomonas putida Paw340 cells were produced. In an enzyme-linked immunosorbent assay (ELISA) against whole bacterial cells, a hybridoma cell line termed MLV1 produced a monoclonal antibody that reacted with P. putida Paw340 but showed no cross-reaction with 100 medical isolates and 150 aquatic isolates. By ELISA, immunogold electron microscopy, and Western blot (immunoblot) analysis, MLV1 antibody was found to react with purified bacterial flagella. The surfaces of magnetic polystyrene beads were coated with MLV1 antibody. By mixing MLV1 antibody-coated beads with lake water samples containing the target P. putida host, bead-cell complexes which could be recovered by attraction towards a magnet were formed. Prevention of nonspecific attachment of cells to the beads required the incorporation of detergents in the isolation protocol. These detergents affected colony-forming ability; however, the cells remained intact for direct detection. When reisolated by standard cultural methods, approximately 20% of the initial target population was recovered. Since the beads and bead-cell complexes were recovered in a magnetic field, target bacteria were separated from other lake water organisms and from particulate material which was not attracted towards the magnet and were thereby enriched. This method may now provide a useful system for recovering recombinant bacteria selectively from environmental samples.  相似文献   

5.
Chemotaxis allows bacteria to approach sources of attractant chemicals or to avoid sources of repellent chemicals. Bacteria constantly monitor the concentration of specific chemoeffectors by comparing the current concentration to the concentration detected a few seconds earlier. This comparison determines the net direction of movement. Although multiple, competing gradients often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to concentration gradients of attractants and repellents. Here, we describe the development of a microfluidic chemotaxis model for presenting precise and stable concentration gradients of chemoeffectors to bacteria and quantitatively investigating their response to the applied gradient. The device is versatile in that concentration gradients of any desired absolute concentration and gradient strength can be easily generated by diffusive mixing. The device is demonstrated using the response of Escherichia coli RP437 to gradients of amino acids and nickel ions.Download video file.(97M, mp4)  相似文献   

6.
Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay.  相似文献   

7.
Chemotaxis is the migration of cells in gradients of chemoeffector molecules. Although multiple, competing gradients must often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to gradients of multiple signals. In this work, we developed a microfluidic device for generating precise and stable gradients of signaling molecules. We used the device to investigate the effects of individual and combined chemoeffector gradients on Escherichia coli chemotaxis. Laminar flow-based diffusive mixing was used to generate gradients, and the chemotactic responses of cells expressing green fluorescent protein were determined using fluorescence microscopy. Quantification of the migration profiles indicated that E. coli was attracted to the quorum-sensing molecule autoinducer-2 (AI-2) but was repelled from the stationary-phase signal indole. Cells also migrated toward higher concentrations of isatin (indole-2,3-dione), an oxidized derivative of indole. Attraction to AI-2 overcame repulsion by indole in equal, competing gradients. Our data suggest that concentration-dependent interactions between attractant and repellent signals may be important determinants of bacterial colonization of the gut.Bacteria sense chemoeffectors using cell surface receptors (13, 29). Cells constantly monitor the concentration of specific molecules, comparing the current concentration to the concentration detected a few seconds earlier. This comparison determines the net direction of movement (6, 22). Chemotaxis allows bacteria to approach sources of attractant chemicals or to avoid sources of repellent chemicals. Natural habitats for Escherichia coli, such as the gastrointestinal (GI) tract, are typically heterogeneous and contain multiple chemoeffectors with potentially opposing effects. The integrated chemotactic response in such environments is thus likely to be an important factor in bacterial colonization.Conventional approaches for investigating bacterial chemotaxis, such as the swim plate and capillary (1) assays, are not ideal for quantifying bacterial migration. Chemotactic-ring formation in semisolid agar requires metabolizable attractants and is subject to multiple factors, and both it and the traditional capillary assay are poorly designed to investigate repellent taxis. Mao et al. (23) were the first to investigate bacterial taxis in a microfluidic flow cell. In their device, a concentration gradient is formed by the diffusive mixing of two inlet streams. However, the exposure to a fully developed gradient in this device is limited because it takes time for the gradient to develop.Variations of this technique, such as three-channel microfluidic devices (7, 8) in which a linear gradient is generated in the absence of flow or a T-channel device that monitors chemotaxis perpendicular to the direction of fluid flow (18), were developed subsequently. The T-channel system has many of the limitations of the device developed by Mao et al. (23), and nonflow systems, like the capillary assay (1), suffer from a lack of temporal stability of the gradients.Here, we report a flow-based microfluidic chemotaxis device that is coupled to a gradient generator. Bacteria are exposed to precise and temporally stable concentration gradients of chemoeffectors over the length of the microfluidic channel. This device was used to quantify E. coli chemotaxis in response to the canonical chemoeffectors l-aspartate and Ni2+. The device was also used to investigate chemotaxis toward cell-cell communication signals such as autoinducer-2 (AI-2), indole, and isatin that are likely to be present in the in vivo microenvironment in which E. coli is present (e.g., the human GI tract). The data obtained reinforce the idea that concentration-dependent interactions between different chemical signals could be important determinants of bacterial colonization in natural environments.  相似文献   

8.
A method has been devised to differentiate viable and nonviable bacterial spores. “Germination-like” changes are initiated in spores with performic acid and lysozyme. The germinated spores are stained with aqueous acridine orange, a fluorescent dye. Nonviable spores fluoresce lemon-green and viable spores orange-red. It is proposed that with the use of a membrane filter resistant to performic acid and lysozyme, the method may be used for spore enumeration in foods in about 4 hr compared to conventional plating methods, which usually require up to 72 hr.  相似文献   

9.
10.
A Simple, Rapid Method for Demonstrating Bacterial Flagella   总被引:1,自引:1,他引:0       下载免费PDF全文
We developed a simple, rapid method for demonstrating flagellation of bacteria using the fluorescent protein stain NanoOrange (Molecular Probes, Eugene, Oreg.). The NanoOrange reagent binds to hydrophobic regions of proteins, which results in substantial enhancement of fluorescence. Unbound reagent is essentially nonfluorescent. NanoOrange fluorescently stained bacterial cell bodies, as well as flagella and other appendages, which could be directly observed by epifluorescence microscopy. Detection of flagella was further improved by using a charge-coupled device camera for image capture and processing. The reliability of the method was tested by using 37 pure cultures of marine bacteria. Detection of flagella on the isolates by NanoOrange staining was compared to detection by transmission electron microscopy (TEM). For 36 of 37 cultures, the two methods yielded the same results. In one case, flagella were detected by TEM but not by NanoOrange, although the difference may be attributable to differences between the culture preparations. NanoOrange staining is rapid (10 to 15 min) and does not require fixation or dehydration, so live samples can be stained. Since NanoOrange is a general protein stain and works directly in seawater, it may also prove to be useful for staining other proteinaceous material that is of interest to aquatic microbial ecologists.  相似文献   

11.
A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.  相似文献   

12.
13.
Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM). In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.  相似文献   

14.
A microfluidic platform or “microfluidic mapper” is demonstrated, which in a single experiment performs 36 parallel biochemical reactions with 36 different combinations of two reagents in stepwise concentration gradients. The volume used in each individual reaction was 36 nl. With the microfluidic mapper, we obtained a 3D enzyme reaction plot of horseradish peroxidase (HRP) with Amplex Red (AR) and hydrogen peroxide (H2O2), for concentration ranges of 11.7 μM to 100.0 μM and 11.1 μM to 66.7 μM for AR and H2O2, respectively. This system and methodology could be used as a fast analytical tool to evaluate various chemical and biochemical reactions especially where two or more reagents interact with each other. The generation of dual concentration gradients in the present format has many advantages such as parallelization of reactions in a nanoliter-scale volume and the real-time monitoring of processes leading to quick concentration gradients. The microfluidic mapper could be applied to various problems in analytical chemistry such as revealing of binding kinetics, and optimization of reaction kinetics.  相似文献   

15.
While microfluidic technology is reaching a new level of maturity for macromolecular assays, cell-based assays are still at an infant stage1. This is largely due to the difficulty with which one can create a cell-compatible and steady microenvironment using conventional microfabrication techniques and materials. We address this problem via the introduction of a novel microfabrication material, agarose gel, as the base material for the microfluidic device. Agarose gel is highly malleable, and permeable to gas and nutrients necessary for cell survival, and thus an ideal material for cell-based assays. We have shown previously that agarose gel based devices have been successful in studying bacterial and neutrophil cell migration2. In this report, three parallel microfluidic channels are patterned in an agarose gel membrane of about 1mm thickness. Constant flows with media/buffer are maintained in the two side channels using a peristaltic pump. Cells are maintained in the center channel for observation. Since the nutrients and chemicals in the side channels are constantly diffusing from the side to center channel, the chemical environment of the center channel is easily controlled via the flow along the side channels. Using this device, we demonstrate that the movement of neural stem cells can be monitored optically with ease under various chemical conditions, and the experimental results show that the over expression of epidermal growth factor receptors (EGFR) enhances the motility of neural stem cells. Motility of neural stem cells is an important biomarker for assessing cells aggressiveness, thus tumorigenic factor3. Deciphering the mechanism underlying NSC motility will yield insight into both disorders of neural development and into brain cancer stem cell invasion.Download video file.(81M, mov)  相似文献   

16.
Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series.  相似文献   

17.
Plant pathogens cause major economic losses in the agricultural industry because late detection delays the implementation of measures that can prevent their dissemination. Sensitive and robust procedures for the rapid detection of plant pathogens are therefore required to reduce yield losses and the use of expensive, environmentally damaging chemicals. Here we describe a simple and portable system for the rapid detection of viral pathogens in infected plants based on immunofiltration, subsequent magnetic detection, and the quantification of magnetically labeled virus particles. Grapevine fanleaf virus (GFLV) was chosen as a model pathogen. Monoclonal antibodies recognizing the GFLV capsid protein were immobilized onto immunofiltration columns, and the same antibodies were linked to magnetic nanoparticles. GFLV was quantified by immunofiltration with magnetic labeling in a double-antibody sandwich configuration. A magnetic frequency mixing technique, in which a two-frequency magnetic excitation field was used to induce a sum frequency signal in the resonant detection coil, corresponding to the virus concentration within the immunofiltration column, was used for high-sensitivity quantification. We were able to measure GFLV concentrations in the range of 6 ng/ml to 20 μg/ml in less than 30 min. The magnetic immunoassay could also be adapted to detect other plant viruses, including Potato virus X and Tobacco mosaic virus, with detection limits of 2 to 60 ng/ml.  相似文献   

18.
Disruption of Bacterial Cells by a Synthetic Zeolite   总被引:1,自引:1,他引:0       下载免费PDF全文
The use of a synthetic zeolite (type 4A, Union Carbide Corp., Linde Div., New York, N.Y.) in a procedure for the preparation of pure cell wall fractions proved successful for many gram-positive, gram-negative, and acid-fast bacteria, as well as for some fungi. The technique, however, was found to be limited in effectiveness for Rhodospirillum rubrum, Gaffkya tetragena, and Sarcina lutea, and not applicable to preparations of heat killed microorganisms. The possible mechanisms of zeolite action, together with the effect of the disruptive procedure on the chemical composition of cell wall fragments, were investigated also.  相似文献   

19.
The identification of phylogenetic clusters of bacteria that are common in freshwater has provided a basis for probe design to target important freshwater groups. We present a set of 16S ribosomal RNA gene-based oligonucleotide probes specific for 15 of these freshwater clusters. The probes were applied in reverse line blot hybridization, a simple method that enables the rapid screening of PCR products from many samples against an array of probes. The optimized assay was made stringent to discriminate at approximately the single-mismatch level. This made 10 of the probes highly specific, with at least two mismatches to the closest noncluster member in the global database. Screening of PCR products from bacterioplankton of 81 diverse lakes from Belgium, The Netherlands, Denmark, Sweden, and Norway showed that the respective probes were reactive against 5 to 100% of the lake samples. Positive reactivity of six highly specific probes showed that bacteria from actinobacterial clusters ACK-M1 and Sta2-30 and from verrucomicrobial cluster CLO-14 occurred in at least 90% of the investigated lakes. Furthermore, bacteria from alpha-proteobacterial cluster LD12 (closely related to the marine SAR11 cluster), beta-proteobacterial cluster LD28 and cyanobacterial cluster Synechococcus 6b occurred in more than 70% of the lakes. Reverse line blot hybridization is a new tool in microbial ecology that will facilitate research on distribution and habitat specificity of target species at relatively low costs.  相似文献   

20.
Uropathogenic Escherichia coli (UPEC) and Staphylococcus saprophyticus (S. saprophyticus) are responsible for the majority of community-acquired urinary tract infections (UTI). Agar plating, a gold standard for detection of bacterial uropathogens, is labor intensive, limited for distinguishing between environmental contaminants and pathogens, and fails to effectively detect mixed infections. A reliable method for specific and sensitive quantitative assessment of infections would allow cost-effective evaluation of large numbers of experimental samples. A methodology such as quantitative PCR (qPCR) addresses the limitations of agar plating. We developed and validated highly specific and sensitive qPCR assays to assist researchers in the evaluation of potential vaccines and interventions in preclinical models of UPEC and S. saprophyticus UTI. The developed UPEC PCR targeted a highly conserved region of the UPEC hemolysin D (hlyD) gene that reproducibly detected type strains CFT073 and J96 over a 9 log range with high precision. To quantify S. saprophyticus genomes, a separate qPCR assay targeting the Trk transport gene was developed with an 8 log range. Neither assay detected bacterial species predicted to be sample contaminants. Using our optimized workflow that includes automated steps, up to 200 urine or tissue samples can be processed in as few as 3 h. Additionally, sequence comparisons of our primers and probe to other UTI bacterial strains indicated the broad applicability of these assays. These optimized qPCR assays provide a cost-effective and time-saving method for quantification of bacterial burdens in tissues and body fluids to assess the effectiveness of candidate vaccines or interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号