首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ingestion of Kunitz soybean trypsin inhibitor (STI) by larval Helicoverpa zea, Agrotis ipsilon, and Trichoplusia ni extended the retention time of food in the digestive tract and increased the level of activity of proteolytic enzymes that were not susceptible to inhibition by STI. The level of enhancement of activity of STI-resistant (STI-R) enzyme(s) was directly influenced by the dosage and timing of exposure to STI. However, not all proteinase inhibitors (PIs) enhanced the level of proteinase inhibitor resistant (PI-R) enzymes, even if those PIs inhibited a significant proportion of enzyme activity. These findings suggest that a complex system may be responsible for the regulation of proteolytic enzymes in the midgut of larval Lepidoptera, and one hypothesis for this regulation is proposed.  相似文献   

2.
3.
4.
Song J  Markley JL 《Biochemistry》2003,42(18):5186-5194
Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from differential intramolecular interactions within the intact inhibitors (OMIPF3 vs OMTKY3) in a region of each protein that becomes disordered upon reactive site cleavage (to OMIPF3* and OMTKY3*).  相似文献   

5.
Photochemically induced dynamic nuclear polarization was used to study the accessibility of surface tyrosine and tryptophan residues in proteinases, in their protein inhibitors and in the proteinase–inhibitor complexes. The accessibility probe is the triplet of 10-(carboxyethyl) flavin formed by optical excitation. On complex formation we observe accessibility loss in the surface tyrosines and tryptophans in the proximity of the proteinase–inhibitor contact site, and in the case of bovine pancreatic trypsin inhibitor, in more distant tyrosines as well.  相似文献   

6.
Bovine trypsinogen and chymotrypsinogen were successfully refolded as the mixed disulfide of glutathione using cysteine as the disulfide interchange catalyst. The native structures were regenerated with yields of 40%-50% at pH 8.6 and 4 degrees C, and the half-time for the refolding was approximately 60-75 min. We then refolded threonine-neochymotrypsinogen, which is a two-chain structure held together by disulfide bonds and produced on cleavage of Tyr 146-Thr 147 in native chymotrypsinogen [Duda CT, Light A, J Biol Chem 257 9866-9871, 1982]. Neochymotrypsinogen was denatured and fully reduced, and the thiols were converted to the mixed disulfide of glutathione. The two polypeptide fragments, representing the amino- and carboxyl-terminal domains, were separated on Sephadex G-75. Mixtures of the polypeptide fragments varying in the ratio of their concentration from 1:5 to 5:1 were refolded with yields of 21-28%. The lack of dependence on the concentration of either fragment and the relatively high yields suggest independent folding of the amino- and carboxyl-terminal domains. When the globular structures of the domains formed, they then interacted with one another and produced the native intermolecular disulfide bridge and the proper geometry of the active site.  相似文献   

7.
A series of amino acid-derived sulfonate salts have been synthesized. They were found to inactivate efficiently and selectively human leukocyte elastase. The sulfonate salts of the methyl esters of L-norleucine, L-norvaline and L-valine were the most potent. The enzyme is inactivated irreversibly with concomitant release of bisulfite ion. The results demonstrate for the first time that ionic compounds can indeed function as novel inhibitors for the serine proteinases.  相似文献   

8.
9.
Two polypeptides, isolated to electrophoretic homogeneity from Russet Burbank potato tubers, are powerful inhibitors of pancreatic serine proteinases. One of the inhibitors, called polypeptide trypsin inhibitor, PTI, has a molecular weight of 5100, and inhibits bovine trypsin. The inhibitor is devoid of methionine, histidine, and tryptophan and contains eight half-cystine residues as four disulfide bridges. The second inhibitor, polypeptide chymotrypsin inhibitor II, PCI-II, has a molecular weight of 5700 and powerfully inhibits chymotrypsin. This inhibitor is also devoid of methionine and tryptophan but it contains only six of half-cystines as three disulflde bonds. Both polypeptides strongly inhibit pancreatic elastase. In immunological double diffusion assays, polypeptide trypsin inhibitor and polypeptide chymotrypsin inhibitor II exhibit a high degree of immunological identity (a) with each other, (b) with a polypeptide chymotrypsin inhibitor (PCI-I, Mr 5400) previously isolated from potato tubers, and (c) with inhibitor II, a larger (monomer Mr ~ 12,000) inhibitor of both trypsin and chymotrypsin which has also been previously isolated from potato tubers. The four polypeptide proteinase inhibitors now isolated from Russet Burbank potato tubers cumulatively inhibit all five major intestinal digestive endo- and exoproteinases of animals. The inhibitors are thought to be antinutrients that are present as part of the natural chemical defense mechanisms of potato tubers against attacking pests.  相似文献   

10.
Data on study of action plasma inhibitors on activity of pancreatic proteolytic enzymes (trypsin, chymotrypsin) and plant proteinases (papain, bromelain), included in composition of enzyme mixes, used for orally application are submitted. It is established, that serine proteases are more sensitive to inactivation of plasma inhibitors, than cysteine enzymes. Main inhibitor of the papain and bromelain is alpha-2-macroglobulin in complex with which they preserve significant part of initial activity. A high-sensitivity method of determination of activity enzyme combinations, enabling to detect nanograms of them in presence of plasma inhibitors is offered. It can be used for study pharmacokinetic and optimization of enzyme mixes application in clinical practice.  相似文献   

11.
Canonical loops of protein inhibitors of serine proteinases occur in proteins having completely different folds. In this article, conformations of the loops have been analyzed for inhibitors belonging to 10 structurally different families. Using deviation in Cα-Cα distances as a criterion for loop similarity, we found that the P3-P3′ segment defines most properly the length of the loop. When conformational differences among loops of individual inhibitors were compared using root mean square deviation (rmsd) in atomic coordinates for all main chain atoms (Δr method) and rmsd operating in main chain torsion angles (Δt method), differences of up to 2.1 Å and 72.3°, respectively, were observed. Such large values indicate significant conformational differences among individual loops. Nevertheless, the overall geometry of the inhibitor-proteinase interaction is very well preserved, as judged from the similarity of Cα-Cα distances between Cα of catalytic Ser and Cα of P3-P3′ residues in various enzyme-inhibitor complexes. The mode of interaction is very well preserved both in the chymotrypsin and subtilisin families, as distances calculated for subtilisin-inhibitor complexes are almost always within the range of those for chymotrypsin-inhibitor complexes. Complex formation leads to conformational changes of up to 160° for χ1 angle. Side chains of residue P1 and P2′ adopt in different complexes a similar orientation (χ1 angle = −60° and −180°, respectively). To check whether the canonical conformation can be found among non–proteinase-inhibitor Brookhaven Protein Data Bank structures, two selection criteria—the allowed main chain dihedral angles and Cα-Cα distances for the P3-P3′ segment—were applied to all these structures. This procedure detected 132 unique hexapeptide segments in 121 structurally and functionally unrelated proteins. Partial preferences for certain amino acids occurring at particular positions in these hexapeptides could be noted. Further restriction of this set to hexapeptides with a highly exposed P1 residue side chain resulted in 40 segments. The possibility of complexes formation between these segments and serine proteinases was ruled out in molecular modeling due to steric clashes. Several structural features that determine the canonical conformation of the loop both in inhibitors and in other proteins can be distinguished. They include main chain hydrogen bonds both within the P3-P3′ segment and with the scaffold region, P3-P4 and P3′-P4′ hydrophobic interactions, and finally either hydrophobic or polar interactions involving the P1′ residue. Proteins 32:459–474, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
A series of substituted benzamidines was tested for their inhibitory effects on boar acrosin. Substituents with electron-donating properties and small aliphatic residues increase the inhibitory activity of benzamidine, whereas aromatic residues have only a slight enhancing influence. Only substituents with a beta- or gamma-keto group increase the acrosin binding affinity by more than one order of magnitude. Comparison of the structure-activity relationships for the inhibition of acrosin and trypsin showed differences in the binding sites of both enzymes.  相似文献   

13.
Inhibition of six serine proteinases (bovine trypsin and chymotrypsin, equine leucocyte proteinases type 1 and 2A, porcine pancreatic elastase type III and rabbit plasmin) by rabbit alpha 1-proteinase inhibitors F and S was studied. In each case examined, the F form reacted more rapidly. The number of moles of an enzyme inhibited by one mole of alpha 1-proteinase inhibitor in a complete reaction (molar inhibitory capacity) ranged from 0.26 (leucocyte proteinase type 1) to 1.01 (trypsin). More significantly, however, the molar inhibitory capacities of both alpha 1-proteinase inhibitors differed for the same enzymes. The highest F/S inhibitory ratio was recorded with chymotrypsin (1.88), and the lowest with elastase (0.69). These differences in molar inhibitory capacities are likely to reflect the dual nature of the reaction between the inhibitor and a proteinase, that is, either complex formation or inactivation of alpha 1-proteinase inhibitor without enzyme inhibition. No evidence was obtained to suggest that differential reactivity and differential inhibitory capacity are interdependent. The observations are consistent with the view that rabbit alpha 1-proteinase inhibitors F and S are closely related yet functionally distinct proteins.  相似文献   

14.
V. V. Mosolov  M. N. Shul'gin 《Planta》1986,167(4):595-600
Specific protein inhibitors of microbial serine proteinases were isolated from wheat (Triticum aestivum L.), rye (Secale cereale L.) and triticale using affinity chromatography on subtilisin-Sepharose 4B. The wheat inhibitor had an isoelectric point (pI) at pH 7.2, while the rye inhibitor consisted of two forms with pI values of 6.8 and 7.1. In triticale, two components were present with pIs 7.2 and 6.8. All the inhibitors had M r values of approx. 20 000. The isolated proteins were effective inhibitors of subtilisins Carlsberg and BPN, and of fungal proteinases (EC 3.4.21.14) from the genus Aspergillus, but they were completely inactive against trypsin (EC 3.4.21.4) chymotrypsin (EC 3.4.21.1) and pancreatic elastase (EC 3.4.21.36). The inhibitors formed complexes with subtilisin in a molar ratio of 1:1. The results of chemical modifications seem to indicate that the isolated inhibitors have methionine residues in their reactive sites.Abbreviation pI isoelectric point  相似文献   

15.
Primary structures of serine proteinases.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

16.
Derivatives of benzamidine inhibit competitively the activity of the serine proteinases trypsin, plasmin, thrombin, and of the clotting factor Xa. The inhibitor activities (Ki-values) of various benzamidine derivatives against the several enzymes were compared. Besides parallels, deviations in the corresponding structure-activity relationships were found. From these results it is concluded that the similar enzymes exhibit certain differences in the structure of the primary and secondary binding sites.  相似文献   

17.
18.
Peptidyl chloromethyl ketones were used for the specific labeling of proteinases by attaching a biotin group to the N-terminal end of the peptide. Such labeled peptide inhibitors allowed the detection and quantitation of proteolytic enzymes immobilized on the plastic surface of a microtiter plate, as well as on nitrocellulose. The validity of these solid-phase assays was demonstrated using subtilisin Carlsberg as a model enzyme and biotinyl-epsilon-aminocaproyl-L-alanyl-L-alanyl-L-propyl-L-phenylal++ + anyl- chloromethyl ketone as a specific reagent. In addition to being usable for the screening of a particular proteinase in a large number of samples, these assays can be adapted for the analysis of specific proteolytic enzyme present in complex mixtures.  相似文献   

19.
20.
Aspartic proteinases and their inhibitors   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号