首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alloantigens encoded by the four defined Qa-1 genotypes were characterized by cloned cytotoxic T lymphocyte (CTL) recognition. CTL clones specific for Qa-1a- and for Qa-1b-encoded antigens were generated. Examination of the reactivity of these clones with target cells from H-2r and H-2f strains provided the strongest evidence to date for the designation of the Qa-1c and Qa-1d genotypes, respectively, for these strains. Qa-1c-encoded antigens were recognized by most, but not all CTL clones that specifically lysed Qa-1b target cells, thus demonstrating that these antigens lack a Qa-1b-associated determinant. Similarly, Qa-1d encoded antigens were recognized by only half of the CTL clones that lysed Qa-1a target cells. In addition, one CTL clone that was cytotoxic for Qa-1b and Qa-1c target cells demonstrated low affinity, cross-reactive recognition of a Qa-1d encoded antigen. The reactivity patterns of the monoclonal CTL defined five Qa-1 determinants. Qa-1a, Qa-1b, and Qa-1d each encode multiple determinants. Two Qa-1d encoded determinants probably reside on different molecular species. Finally, large numbers of CTL clones tested on panels of target cells indicated that the Qa-1a strains expressed indistinguishable Qa-1.1 antigens and the Qa-1b strains expressed indistinguishable Qa-1.2 antigens. Therefore, additional polymorphism among these strains is improbable.  相似文献   

2.
To characterize the four common Qa-1 allelic products, we examined in detail the CTL-defined determinants encoded by Qa-1. In previous studies with anti-Qa-1 CTL and alloantisera, investigators have described antigenic determinants present on Qa-1a and Qa-1b antigens, but they have defined Qa-1c and Qa-1d exclusively by their cross-reactivity with Qa-1a and/or Qa-1b determinants. To delineate further the CTL-defined determinants encoded by Qa-1d, we generated CTL clones with Qa-1d specificity and demonstrated that the Qa-1d molecule expressed determinants that were not detected on Qa-1a, Qa-1b, or Qa-1c target cells. Other CTL clones derived from anti-Qa-1d MLC recognized new antigenic determinants on Qa-1c that cross-reacted with Qa-1d. Each of the four common Qa-1 phenotypes was shown to exhibit unique antigenic determinants. In addition, Qa-1d anti-Qa-1a and Qa-1d anti-Qa-1b CTL confirmed extensive cross-reactivity among these Qa-1 alloantigens. Analysis of CTL from these four immunizations also resulted in the isolation of Qa-1a-specific and Qa-1d-specific CTL clones that cross-reacted with H-2Df and H-2Ks, respectively.  相似文献   

3.
The importance of asparagine-linked glycosylation in the cell surface expression of several class I molecules was examined. C57BL/6 (B6) T cell blasts were treated with tunicamycin (TM), an antibiotic that inhibits N-linked glycosylation. The levels of various class I molecules on these cells were examined by flow cytometry and were compared to the levels of the same molecules on untreated cells. A 12-hr TM treatment did not significantly alter the levels of H-2Kb, Db, or Qa-2; however, such treatment decreased the surface expression of the Qa-1b allelic product to undetectable levels. A time-course study indicated that a decrease in the level of Qa-1.2 expression was apparent after only 4 hr of TM treatment. An examination of T cell blasts prepared from mouse strains possessing the Qa-1a, Qa-1c, and Qa-1d alleles indicated that all allelic products of this locus demonstrated a marked decrease in cell surface expression on TM treatment, whereas other class I molecules (H-2Ks, TL) exhibited slight or no decrease. Two-dimensional polyacrylamide gel electrophoresis analysis of immunoprecipitates from detergent lysates of surface-iodinated TM-treated B6 blasts revealed the presence of the unglycosylated form of the H-2Kb molecule on the cell surface. No such form of the Qa-1.2 molecule could be detected by similar analysis. To establish that the above observations were not simply a result of the inability of the Qa-1-specific alloantisera to react with the unglycosylated Qa-1 molecule, lysates of surface-iodinated B6 blasts were digested with endoglycosidase F, which cleaves N-linked carbohydrate moieties. Immunoprecipitation analysis indicated that the antisera could react with the unglycosylated form of the Qa-1 molecule. These results indicate that N-linked glycosylation has differential importance in the cell surface expression of class I molecules.  相似文献   

4.
Using cloned cytotoxic T lymphocytes (CTL), we have identified a Q region controlled determinant with a unique strain and tissue distribution. Several strains that express the classically defined Qa-2 determinant and other Q region controlled determinants do not express the CTL determinant. In addition, strain BALB/cByJ, which does not normally express any Q region controlled cell surface determinant, expresses this new determinant. Cross-reactivity between the Q region controlled CTL determinant and a Kk region controlled class I product (probably H-2Kk) was observed. Finally, among lymphocytes, the CTL determinant is expressed preferentially (if not exclusively) on B cells, thus distinguishing it from all previously described Q region controlled determinants, which are expressed predominantly on T cells. We provisionally designate this novel Q region controlled CTL determinant Qc-1. The possibility that Qc-1 is recognized together with a self antigen is discussed.  相似文献   

5.
MHC class Ia H chains and beta 2-microglobulin assemble with appropriate peptides to form stable cell surface molecules that serve as targets for Ag-specific CTL. The structural similarities of class Ia and the less polymorphic Q/T/M (class Ib) molecules suggest that class Ib molecules also play a role in antigen presentation, although the origin of the peptides they present remains mostly unclear. The cell line RMA-S has a defect in class I Ag presentation, presumably due to a mutation in a peptide transporter gene. This defect can be overcome by transfection of RMA-S cells with the Tap-2 gene (formerly Ham-2) that encodes an ATP-binding transporter protein. We now show that a substantial portion of alloreactive CTL specific for Qa-1 class Ib molecules recognize Qa-1b on RMA-S cells and thus differ from most class Ia specific CTL. Those anti-Qa-1b CTL that do not recognize untransfected RMA-S do lyse RMA-S transfected with Tap-2. We also examine the effects of Qdm, a gene that maps to the D region and alters recognition of Qa-1. Qdm(k) strains lack an epitope(s) recognized by some (Qdm dependent) anti-Qa-1 CTL whereas Qdm+ strains express this epitope. Thus, Qdm-dependent CTL do not recognize Qa-1 on Qdm(k) targets whereas Qdm-independent CTL recognize Qa-1 epitopes in all strains. Although Qdm-independent CTL varied as to whether they recognized RMA-S vs RMA, all nine Qdm-dependent clones only recognized Qa-1b on RMA and not RMA-S. This result is consistent with Qdm encoding a peptide dependent upon the TAP transporter for cell membrane expression.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) activated in H-2 identical, Qa-1 disparate mixed leukocyte cultures recognize H-2-nonrestricted target antigens indistinguishable by strain or tissue distribution from serologically defined Qa-1 antigens. Cloned Qa-l-specific CTL define determinants encoded by four Qa-1 genotypes; we used anti-Qa-1 sera in antibody blocking experiments to determine if these determinants reside on molecules recognized by Qa-1-specific antibodies. Antisera containing Qa-1.1-specific and TL-specific antibodies blocked recognition of two CTL-defined determinants associated with Qa-1 a . Although both Qa-1 and TL molecules are expressed on activated T cells from appropriate strains, our studies indicated that the CTL recognized Qa-1, not TL. In addition, anti-Qa-1.2 serum inhibited CTL recognition of Qa-1b- and Qa-1c-encoded determinants. Qa-1 d target cells are unique in that they express determinants recognized by anti-Qa-1a CTL and by anti-Qa-1b CTL. Killing of Qa-1 d targets by anti-Qa-1a CTL was not inhibited by anti-Qa-1.1 serum, but was partially inhibited by anti-Qa-1.2 serum. Cytotoxicity of Qa-1 d cells by one anti-Qa-1b CTL clone was inhibited by both anti-Qa-1.2 and anti-Qa-1.1 sera, indicating close association of both serological determinants with the determinants recognized by the CTL. Thus, all of the CTL-defined Qa-1 determinants resided on molecules recognized by Qa-1-specific antibodies, but anti-Qa-1a CTL and Qa-1.1-specific antibodies did not have identical specificities.Abbreviations used in this paper B6 C57BL/6J - CAB concanavalin A stimulated lymphoblasts - CML cell-mediated lympholysis - CTL cytotoxic T lymphocyte - NMS normal mouse serum - MHC major histocompatibility complex - MLC mixed leukocyte culture - MR maximum release - SMDM supplemented Mishell-Dutton medium - SR spontaneous release  相似文献   

7.
The Qa-6 alloantigen and the molecule that crossreacts with the monoclonal antibody (mAb) 20-8-4 have been shown to be serologically distinct from the Qa-2 alloantigen by strain distribution and tissue distribution, respectively. In this report, we address the biochemical relationships among Qa-2, Qa-6, and the 20-8-4 cross-reactive molecule by using immunoprecipitation and polyacrylamide gel electrophoresis. Each of these molecules had an apparent m.w. of approximately 41K and was associated on the cell surface with beta 2-microglobulin. Removal of N-linked oligosaccharides with endoglycosidase F reduced their apparent m.w. to approximately 33K to 34K. The determinants recognized by anti-Qa-6 and mAb 20-8-4 were shown to reside on the same molecule(s) precipitated by anti-Qa-2 sera by immunodepletion experiments. The mAb 20-8-4 was also shown to preclear the molecules detected by the Qa-6 and Qa-2 antisera. Two-dimensional gel electrophoresis analysis demonstrated complete co-migration of the approximately 41K molecules detected by the three antibodies. By peptide map analysis with V8 protease, all three molecules appeared identical. Also, the determinant recognized by Qa-6 antiserum co-modulated with that recognized by the anti-Qa-2 mAb D3.262. Taken together, these results demonstrate that the molecules recognized by these three antisera and/or mAb are biochemically indistinguishable. These data, in conjunction with the serologic and genetic findings suggest that mAb 20-8-4 recognizes a molecule that is biochemically similar and possibly identical to the Qa-2 antigen. Moreover, although the genetic, serologic, and biochemical data demonstrate that Qa-6 is not controlled by the Qa-2 locus, but rather by a gene telomeric to Qa-2, the molecule bearing the Qa-6 determinant is very similar, if not identical, to the Qa-2 molecule. Several possible explanations for these discrepancies are discussed.  相似文献   

8.
The loading of MHC class I molecules with peptides involves a variety of accessory proteins, including TAP-associated glycoprotein (tapasin), which tethers empty MHC class I molecules to the TAP peptide transporter. We have evaluated the role of tapasin for the assembly of peptides with the class Ib molecule Qa-1b. In normal cells, Qa-1b is predominantly bound by a peptide, the Qa-1 determinant modifier (Qdm), derived from the signal sequence of class Ia molecules. Our results show that tapasin links Qa-1b to the TAP peptide transporter, and that tapasin facilitates the delivery of Qa-1b molecules to the cell surface. Tapasin was also required for the presentation of endogenous Qdm peptides to Qdm-specific, Qa-1b-restricted CTLs. In sharp contrast, tapasin expression was dispensable for the presentation of an insulin peptide to insulin-specific, Qa-1b-restricted CTL isolated from TCR transgenic mice. However, tapasin deficiency significantly impaired the positive selection of these insulin-specific, Qa-1b-restricted transgenic CD8+ T cells. These findings reveal that tapasin plays a differential role in the loading of Qdm and insulin peptides onto Qa-1b molecules, and that tapasin is dispensable for retention of empty Qa-1b molecules in the endoplasmic reticulum, and are consistent with the proposed peptide-editing function of tapasin.  相似文献   

9.
Con A splenic lymphoblasts were incubated with phosphatidyl-inositol specific phospholipase C (PIPLC) derived from Bacillus thuringiensis and subsequently analyzed for Qa-2 Ag with the Qa-2 reactive mAb Qa-m2. This treatment completely removed Qa-2 detectable Ag on lymphoblasts from H-2d animals, indicating that these molecules are likely anchored to the cell membrane through phosphatidyl inositol (PI). Although exposure of lymphoblasts from H-2b mice to PIPLC greatly reduced Qa-2 expression, a subpopulation of cells retained a limited quantity of the Ag. Bulk cultured anti-Qa-2 CTL generated against the Qa-2 region from H-2b haplotype mice lysed Qa-2+ targets from B6.K2 (H-2b) and BALB/cJ (H-2d) animals. Pretreatment of these lymphoblast targets with PIPLC completely abolished lysis of the BALB/cJ target cells, whereas lysis of B6 targets was reduced only slightly. Anti-Qa-2 CTL clones tested against PIPLC-treated B6 target cells revealed two patterns of reactivity. One group of clones was unaffected in its ability to lyse PIPLC-pretreated targets and cross-reacted on Q6d/Ld molecules expressed on transfected L cells. A second group was unable to lyse PIPLC-pretreated lymphoblasts and cross-reacted on Q7d/Ld targets. These data suggest that H-2b-derived lymphoblasts express two different types of Qa-2 molecules with respect to PIPLC sensitivity; one type is sensitive to PIPLC and cross-reactive with Q7d, the other type is resistant to PIPLC and cross-reactive with Q6d. In contrast, H-2d lymphoblasts express only the PIPLC-sensitive type of molecules. It was also noted that bulk cultured anti-Qa-2 CTL more readily lysed H-2b target cells expressing a smaller quantity of PIPLC-resistant Ag than H-2d targets expressing a larger amount of PIPLC-sensitive Ag. Further, anti-Qa-2 CTL clones readily lysed PIPLC-treated target cells expressing very low levels of serologically detectable Qa-2. This suggests that recognition of class I molecules anchored to the membrane via a PIPLC-resistant linkage may more readily activate CTL for expression of lytic activity than molecules anchored through PI.  相似文献   

10.
Cytotoxic T lymphocytes (CTL) were induced in C57BL/6 and (C57BL/6 X DBA/2)F1 mice after immunization with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV-Arm) and were cloned by limiting dilution in vitro. The cytotoxic activity of these clones was LCMV specific and H-2 restricted. All clones induced in C57BL/6 (H-2b) mice with LCMV-Arm lysed target cells infected with each of five distinct strains of LCMV (Arm, Traub , WE, Pasteur, and UBC ), suggesting recognition of common regions of viral proteins in association with H-2b molecules. In contrast, one clone obtained from (B6 X D2)F1 mice and restricted to the H-2d haplotype only lysed cells infected with one of three strains of virus (Arm, Traub , WE) but not two others (Pasteur, UBC ), suggesting recognition of variable regions of viral proteins in the context of H-2d molecules. To assess the fine specificity for H-2 molecules, we tested H-2Kb-restricted CTL clones for their ability to kill LCMV-infected target cells bearing mutations in their H-2Kb, and we tested clones presumed to be restricted to the H-2Db region for their ability to all LCMV targets cells bearing a mutation in the H-2Db region. Several different patterns of killing of the mutant targets were observed, indicating that a number of different epitopes on the H-2b molecules were used as restricting determinants for LCMV antigen recognition by CTL. Thus, cross-reactive viral determinants were recognized in the context of several different restricting determinants. Mutations in the N or C1 domains of the H-2 molecule affected recognition by a single LCMV specific CTL clone. One implication of this result is that CTL recognize a conformational determinant on the H-2 molecule formed by the association of virus antigen(s) with H-2. An alternate explanation is that one site on the H-2 molecule is involved in the interaction of viral antigens with H-2, whereas another may serve as a binding site for the CTL receptor.  相似文献   

11.
Biosynthesis of glycosylated human lysozyme mutants.   总被引:9,自引:0,他引:9  
Complementary DNA encoding human lysozyme was subjected to oligonucleotide-directed mutagenesis. At one of three selected positions, amino acid residues 22, 68, or 118, the signal for N-linked glycosylation was created. The mutant DNAs were inserted into a eucaryotic vector and transfected into cultured hamster cells. The three mutant cDNAs directed synthesis of lysozyme mutants, which were named LI, LII, and LIII. The mutant lysozymes LI and LII comprised mixtures of glycosylated and nonglycosylated forms. The glycosylated and nonglycosylated forms of mutant LI were found to have an enzymatic activity similar to normal human milk lysozyme. The usage of the glycosylation sites in the mutants was similar in Chinese hamster ovary (CHO) and baby hamster kidney cells. Approximately two of every three molecules in mutant LI, approximately one of every eight molecules in mutant LII, and practically no molecules in mutant LIII became glycosylated. In CHO cells, the processing of the oligosaccharide side chains yielded several larger products than in baby hamster kidney cells. This size variability of glycosylated lysozyme from CHO cells may be explained by the presence of biantennary and triantennary endo-beta-N-acetylglucosaminidase H-resistant oligosaccharides with N-acetyllactosamine repeats of variable length and by the presence of hybrid oligosaccharides, as suggested by affinity to several lectins and sensitivity to endo-beta-galactosidase. In both cell types, the majority of the glycosylated forms were secreted and thus behaved similarly to nonglycosylated lysozyme. A small proportion of mutant LI lysozyme remained associated with the cells. The retained lysozyme was recruited predominantly from the molecules bearing high mannose oligosaccharides. These molecules were targeted to lysosomes, and their carbohydrate was trimmed to an endo-beta-N-acetylglucosaminidase H-resistant form. Owing to the small size of mutant LI lysozyme, minor changes in the size of its carbohydrate moiety result in detectable changes in the electrophoretic mobility of the whole glycoprotein. We suggest that this novel glycoprotein could be used as a reporter in studies on processing and segregation of glycoproteins.  相似文献   

12.
NK cell-dependent resistance of F1 hybrid mice to parental H-2b hemopoietic allografts is directed to cell surface structures controlled by the Hh-1 locus in or near the H-2D region. Crucial to an understanding of this enigmatic phenomenon is the information on the biochemical nature of the Hh-1 locus-controlled structures. Therefore, we examined the effect of tunicamycin (TM), an inhibitor of asparagine-linked glycosylation and ganglioside biosynthesis, on the expression of Hh-1 determinants in H-2b/Hh-1b lymphomas. The Hh-1b determinants on EL-4 and RBL-5 cells were no longer detectable after TM treatment, as demonstrated by the failure of the treated cells to inhibit hybrid resistance to parental H-2b bone marrow cells in vivo. This interpretation was supported by the unaltered ability of the TM-treated cells to localize in the spleens of irradiated F1 hybrid recipients. In contrast, TM caused only moderate reduction in H-2Kb and H-2Db expression as measured by binding of specific antibodies. This was accompanied by reduced susceptibility to alloimmune anti-H-2Db CTL, but not to anti-H-2Kb CTL. No decrease was found in the susceptibility to NK cell cytotoxicity in vitro. These data indicate that N-linked glycosylation or ganglioside synthesis is crucial for the expression of the Hh-1 locus-controlled target structures, but not for the H-2 class I molecules. The data also show that the Hh-1b determinants are substantially different from those which confer the susceptibility to NK cell-mediated in vitro cytotoxicity.  相似文献   

13.
The requirements for viral and host protein synthesis in the generation of target antigens for cytotoxic T lymphocytes (CTL) was evaluated by using vesicular stomatitis virus (VSV) inactivated by UV irradiation (UV-VSV). EL4 target cells incubated with UV-VSV were recognized and lysed by anti-VSV CTL, indicating that de novo synthesis of viral proteins was not required for the generation of antigens recognized by antiviral CTL. Anti-VSV CTL from H-2b mice primarily recognize determinants derived from the VSV N protein bound to the class I major histocompatibility complex (MHC) antigen H-2Kb. Comparison of a cloned CTL line representing this specificity and a heterogeneous population of anti-VSV CTL showed that determinants other than that recognized by the cloned CTL were generated more efficiently from UV-VSV. By using vaccinia virus recombinants that express deletion fragments of the N protein, it was shown that these additional determinants were probably derived from VSV proteins other than the N protein. The protein synthesis inhibitor emetine was used to determine whether newly synthesized host proteins were required for antigen generation. The addition of emetine to target cells prior to or at the time of the addition of UV-VSV inhibited lysis by anti-VSV CTL. This inhibition could be due to depletion of newly synthesized MHC molecules from intracellular membranes. This hypothesis was supported by using brefeldin A to delay membrane protein transport in target cells during the time of incubation with emetine and UV-VSV, which resulted in partial reversal of the effect of emetine. These results suggest that newly synthesized class I MHC molecules are required for the generation of antigens recognized by anti-VSV CTL.  相似文献   

14.
Cloned and uncloned populations of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) were treated with tunicamycin, an antibiotic that inhibits N-linked glycosylation, in order to study the potential role of cell surface carbohydrate determinants in lytic function. It is shown that tunicamycin-treated NK and CTL effector cells lose killer function in a dose-dependent manner. This effect is reversible; cells washed free of tunicamycin begin to recover their killer activity within 2 to 3 days after initial treatment. Conjugate experiments indicate that killer-target cell binding is not affected by tunicamycin treatment of the NK cells. It is also shown that tunicamycin treatment of target cells does not significantly affect their ability to be lysed by NK or CTL effector cells. These studies provide evidence that carbohydrate determinants are important in the lytic mechanism of both CTL and NK cells, rather than in specific effector-target cell binding.  相似文献   

15.
Human cytotoxic T lymphocytes (CTL) have been shown to recognize either class I or class II major histocompatibility (MHC) products. This recognition has been correlated with the expression of OKT antigens on the surface of the CTL. Thus, OKT4+ CTL have been shown to be reactive with class II products, whereas OKT8+ effectors recognize class I molecules. In this study, responder cells were separated according to their OKT4 or OKT8 cell surface phenotype on a fluorescence-activated cell sorter (FACS). The OKT4+ subsets were stimulated with an LCL mutant that did not express DR and MB/MT but did express SB and class I antigens. After 7 days in culture, the activated subsets were tested on a panel of class I matched or mismatched targets. The cytotoxicity observed could be correlated with the presence of matched class I antigens. In addition, monoclonal antibody (MCA) W6/32, directed at a monomorphic determinant on HLA-A and -B molecules, blocked lysis. Furthermore, six OKT4+ CTL clones were derived from the OKT4+ bulk cultures; three clones were found to be directed at class I molecules whereas the other three recognized class II determinants. The ability of these clones to lyse their relevant targets was blocked by OKT4 MCA, raising questions as to the role of the T4 molecule in antigen class-specific CTL recognition.  相似文献   

16.
Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.  相似文献   

17.
Abstract: The L5 antigenic determinant was previously suggested to be a carbohydrate epitope present on murine cell recognition molecules in the developing brain and to be an early neural marker in the chick embryo. Here, we show that L5 immunoreactivity is associated with complex-type N -glycosidic oligosaccharides. To identify the carbohydrate structure recognized by the L5 antibody, we investigate its binding to N-linked oligosaccharides derived from L5 glycoproteins and to known glycans. Results of mass spectrometric analyses of L5-positive neoglycolipids prepared from L5 glycoproteins are consistent with those for N -glycans containing a 3-fucosyl N -acetyllactosamine sequence. We also investigate L5 binding to structurally defined, lipid-linked oligosaccharides based on the blood group type I and II backbones. Chromatogram binding assays, ELISA, and inhibition studies show that the antibody reacts strongly with carbohydrate chains presenting the 3-fucosyl N -acetyllactosamine sequence [Lewisx (Lex) or X-hapten] also recognized by anti-SSEA-1 and anti-CD15. Histochemical studies with different antibodies recognizing the Lex sequence show partially overlapping patterns of immunoreactivity during early neural development in the chick embryo. Therefore, we suggest that the epitope recognized by L5 antibody is closely related to those for anti-SSEA-1 and anti-CD15.  相似文献   

18.
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used to examine and compare the products of the Qa-1 locus. Analysis of Qa-1 isolated from detergent lysates of surface labeled cells indicated this molecule was a slightly acidic 48,000 to 50,000 dalton glycoprotein that displayed little charge heterogeneity on resting lymphocytes. The level of expression and degree of charge heterogeneity were both increased on activated lymphocytes. Direct comparison of the Qa-1b, Qa-1c, and Qa-1d allelic products by 2-D PAGE revealed that these three molecules could be distinguished from one another on the basis of isoelectric point, indicating that they were distinct at the molecular level. Comparison of Qa-1 isolated from several Qa-1b strains did not detect additional polymorphism. Removal of asparagine-linked oligosaccharides by treatment with endoglycosidase F indicated that carbohydrate contributed 10,000 to 12,000 to the m.w. of these allelic products. Comparative 2-D PAGE analysis could not distinguish between the deglycosylated Qa-1b, Qa-1c, and Qa-1d allelic products, implying that these molecules have similar primary structures. Peptide mapping supported this conclusion. Proteolytic digestion of the deglycosylated Qa-1b and Qa-1c allelic products resulted in identical peptide map patterns; such treatment of the deglycosylated Qa-1d allelic product produced a slightly different pattern. Peptide mapping analysis also demonstrated that the Tlaa and Qa-1a allelic products were distinct from one another, as well as being very different from the other three Qa-1 allelic products.  相似文献   

19.
The role of glycosylation in transport and expression of HSV-1 glycoproteins on the surface of HSV-1-infected African green monkey kidney cells was investigated by using tunicamycin (TM). A concentration of 0.05 microgram/ml of TM inhibited the replication of HSV-1 by greater than 99%. Immunoblot analysis of TM-treated and virus-infected cells indicated that 0.05 microgram/ml of TM blocked the addition of N-linked oligosaccharides into glycoproteins B, C and D. An immunofluorescence assay of TM-treated (0.05 and 0.1 microgram/ml) and virus-infected cells demonstrated the presence of nonglycosylated gC, gD and a reduced amount of gB on the surface of infected cells. The results suggest that the addition of N-linked oligosaccharides on the studied HSV-1 glycoproteins was not necessary for their transport and expression on the virus-infected cell surface.  相似文献   

20.
Abstract: Myelin-associated glycoprotein (MAG) and Schwann cell myelin protein (SMP) are highly glycosylated members of a newly defined family of cell adhesion molecules belonging to the immunoglobulin superfamily that recognize terminal sialic acid residues on N- and O-linked oligosaccharides. The importance of the N-linked oligosaccharides on MAG were determined by removal of the eight predicted carbohydrate addition sites by site-directed mutagenesis. The results suggest that all eight N-linked glycosylation sites are utilized in COS cells. N-linked glycosylation does not appear to be required for sialic acid-dependent MAG binding to erythrocytes. However, N-linked glycosylation of MAG does play a role in the proper folding of MAG. It was also shown that sialylation in the host cell expressing MAG and SMP could inhibit binding to erythrocytes. The degree to which SMP and MAG erythrocyte binding was affected by sialylation in the host cell was dependent on (a) the level at which MAG was expressed on the surface on the host cell and (b) the presence of MAG ligands on the host cell. The data suggest that cis -ligands on the host cell compete with trans -ligands on the target cell for the binding site(s) on MAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号